Connexive logic: X-Phi results and coherence-based probability semantics

Niki Pfeifer & Leon Schöppl

Department of Philosophy University of Regensburg (Germany)

niki.pfeifer@ur.de
leon.schoeppl@ur.de

Reasoning and uncertainty: probabilistic, logical, and psychological perspectives (August 9–10, 2022)

This work is supported by the BMBF project 01UL1906X

Table of Contents

- Background
 - A basic, connexive intuition
 - Some connexive principles
 - Previous data
- Coherence-based probability logic
 - Overview
 - Approach 1
 - Approach 2
- Experiment
 - Predictions
 - Participants
 - Method
 - Results
- Summary & Discussion
 - Other results
- References

A basic, connexive intuition

Self-negating conditionals of the form $A \rightarrow \sim A$ (and also $\sim A \rightarrow A$) should not hold.

A basic, connexive intuition

Self-negating conditionals of the form $A \rightarrow \sim A$ (and also $\sim A \rightarrow A$) should not hold.

And yet, classical logic renders these formulas contingent:

A basic, connexive intuition

Self-negating conditionals of the form $A \rightarrow \sim A$ (and also $\sim A \rightarrow A$) should not hold.

And yet, classical logic renders these formulas contingent:

▶ Truth conditions of the material implication (⊃) interpretation of conditionals:

Α	В	A	\supset	В
Т	Т	Т	Т	Т
F	Т	F	Т	Т
Т	F	Т	F	F
F	F	F	т	F

A basic, connexive intuition

Self-negating conditionals of the form $A \rightarrow \sim A$ (and also $\sim A \rightarrow A$) should not hold.

And yet, classical logic renders these formulas contingent:

▶ Truth conditions of the material implication (⊃) interpretation of conditionals:

Α	В	A	\supset	В	
Т	Т	Т	Т	Т	-
F	Т	F	т	Т	
Т	F	Т	F	F	
F	F	F	т	F	
$A \supset -$	¬A is	equi	valer	it to	$\neg A$.
Α	A	\supset		Α	
Т	Т	F	F	Т	
F	F	т	Т	F	

►

A basic, connexive intuition

Self-negating conditionals of the form $A \rightarrow \sim A$ (and also $\sim A \rightarrow A$) should not hold.

And yet, classical logic renders these formulas contingent:

▶ Truth conditions of the material implication (⊃) interpretation of conditionals:

Α	В	Α	\supset	В	
Т	Т	Т	Т	Т	-
F	Т	F	т	Т	
Т	F	Т	F	F	
F	F	F	т	F	
A ⊃ -	-A is	equi	valer	it to	$\neg A$.
Α	Α	\supset	7	Α	
Т	Т	F	F	Т	
F	F	т	Т	F	

Þ

• $\neg A \supset A$ is equivalent to A.

Α	-	Α	\supset	Α
Т	F	Т	Т	Т
F	T	F	F	F

Some connexive principles

► Aristotle's thesis:
$$\sim (\sim A \rightarrow A)$$

 $A = (\sim A \rightarrow A)$
 $T = F = F = T = T = T$
 $F = T = F = F$

Some connexive principles

Some connexive principles

► Aristotle's thesis:
$$\sim (\sim A \rightarrow A)$$
 $A \mid \neg \quad (\neg \quad A \quad \supset \quad A)$
 $T \mid F \quad F \quad T \quad T \quad T$
 $F \mid T \quad T \quad F \quad F \quad F$

 ► Abelard's first principle: $\sim ((A \rightarrow B) \land (A \rightarrow \sim B))$

Previous data

Table: Collection of data from previously published experiments in %. As all of the studies differ slightly in their exact phrasing and presentation of the material, we opted to use pre-theoretic symbols +, -, ? to categorize their results.

	Pf	eifer	&								Pfeifer	&	Pf	eifer	&
	٦	Tulkl	ĸi	F	feife	er	M	cCu	II	Stö	ckle-So	chobel		/ama	а
		2017	7	:	2012	2	2	2012			2015	5		2017	,
	r	n = 6	0	r.	n = 4	0	n	= 89)		<i>n</i> = 4	0	n	= 6	3
Formula name	+	-	?	+	-	?	+	-	?	+	-	?	+	-	?
Negated Identity	12	75	13	10	88	2		NA		10	78	13	6	63	30
Conjunction Elimination		NA			NA		78	20	2		NA			NA	
Contingent Conditional		NA		0	13	88		NA			NA			NA	
Identity		NA		93	3	5	97	3	0		NA			NA	
Arbitrary Fallacy		NA			NA		6	88	7		NA			NA	
Aristotle's Thesis′	77	7	17	78	18	5	88	7	6	68	23	10	76	11	13
Aristotle's Thesis	72	12	17	80	13	8		NA		70	20	10	65	16	19
Boethius' Thesis		NA			NA		84	8	8		NA			NA	

Overview

- Connexive logics generally are constructed to conform to human intuition about connexive principles.
- Coherence-based probability logic features conditional events (C|A) that are true if both A and C hold, false if A holds but C does not, and void otherwise.
- All conditioning events are taken to be possible $(\neq \emptyset)$.
- Probability are interpreted as subjective degrees of belief, and probability assignments are coherent if they avoid Dutch books.
- Imagine your degree of belief in a conditional as the amount you are willing to pay for a bet that it holds (payoff of 1), and if it is void you get your money back.

Coherence-based probability logic

Approach 1: Non-iterated conditionals (see Pfeifer & Sanfilippo 2021)

From the conditional we infer a probabilistic constraint as follows:

- For $A \rightarrow C$, p(C|A) = 1
- For $A \rightarrow \sim C$, p(C|A) = 0
- For $\sim (A \rightarrow C), p(C|A) < 1$
- For $\sim (A \rightarrow \sim C), p(C|A) > 0$

Coherence-based probability logic

Approach 1: Non-iterated conditionals (see Pfeifer & Sanfilippo 2021)

From the conditional we infer a probabilistic constraint as follows:

- For $A \rightarrow C$, p(C|A) = 1
- For $A \rightarrow \sim C$, p(C|A) = 0
- For $\sim (A \rightarrow C), p(C|A) < 1$
- For $\sim (A \rightarrow \sim C), p(C|A) > 0$

Definition: A (non-iterated) connexive principle is valid iff the probabilistic constraint associated with the connexive principle is satisfied by every coherent assessment on the involved conditional events.

Coherence-based probability logic

Approach 1: Non-iterated conditionals (see Pfeifer & Sanfilippo 2021)

From the conditional we infer a probabilistic constraint as follows:

- For $A \rightarrow C$, p(C|A) = 1
- For $A \rightarrow \sim C$, p(C|A) = 0
- For $\sim (A \rightarrow C), p(C|A) < 1$
- For $\sim (A \rightarrow \sim C), p(C|A) > 0$

Definition: A (non-iterated) connexive principle is valid iff the probabilistic constraint associated with the connexive principle is satisfied by every coherent assessment on the involved conditional events.

E.g., **Aristotle's thesis:** $\sim (\sim A \rightarrow A)$ is associated with the probability constraint $p(A|\sim A) < 1$. The only coherent probability assignment for this is $p(A|\sim A) = 0$. Hence, as every coherent probability assignment fulfils the probabilistic constraint, Aristotle's Thesis is valid.

Approach 1: Iterated conditionals (see Pfeifer & Sanfilippo 2021)

From the conditional we infer a probabilistic constraint as follows:

- For $A \rightarrow C$, p(C|A) = 1
- For $A \rightarrow \sim C$, p(C|A) = 0
- For $\sim (A \rightarrow C), p(C|A) < 1$
- For $\sim (A \rightarrow \sim C), p(C|A) > 0$

Definition: An iterated connexive principle $\circ \Rightarrow \Box$ is valid iff the probabilistic constraint in the conclusion \Box is satisfied by every coherent extension from the premise \circ to the conclusion \Box .

Approach 1: Iterated conditionals (see Pfeifer & Sanfilippo 2021)

From the conditional we infer a probabilistic constraint as follows:

- For $A \rightarrow C$, p(C|A) = 1
- For $A \rightarrow \sim C$, p(C|A) = 0
- For $\sim (A \rightarrow C), p(C|A) < 1$
- For $\sim (A \rightarrow \sim C)$, p(C|A) > 0

Definition: An iterated connexive principle $\circ \Rightarrow \Box$ is valid iff the probabilistic constraint in the conclusion \Box is satisfied by every coherent extension from the premise \circ to the conclusion \Box .

E.g., Boethius' Thesis: $(A \rightarrow B) \Rightarrow \sim (A \rightarrow \sim B)$ is associated with the probabilistic constraints p(B|A) = 1 (antecedent) and p(B|A) > 0 (consequent). If a probability assessment satisfies the probabilistic constraint p(B|A) = 1, it also satisfies p(B|A) > 0, hence Boethius' Thesis is valid.

Approach 2 (see Pfeifer & Sanfilippo 2021)

- Conditionals $A \rightarrow C$ are interpreted as the conditional event $C|A \in \{1, 0, p(C|A)\}$.
- Negated conditionals are interpreted by inner negations, such that ~(A → C) is interpreted as ~C|A (And ~(A → ~C) just as C|A).
- ▶ Iterated conditionals like $(A \rightarrow B) \rightarrow (C \rightarrow D)$ are usually treated as iterated conditional events (D|C)|(B|A). For non-trivial cases, we use the theory of logical operations among conditional events (see e.g., Gilio & Sanfilippo 2014).

Definition: A connexive principle is valid iff the associated conditional random quantity is constant and equal to one.

E.g., **Aristotle's Thesis:** $\sim (\sim A \rightarrow A)$ is interpreted by (the inner-negated conditional event) $\sim A | \sim A$, which is (by coherence) constant and equal to 1. Hence, Aristotle's Thesis is valid in Approach 2.

Predictions (1/3)

Table: Formulas and connexive principles investigated in both Experiments. Response-predictions according to classical logic (CL), Approach 1 and Approach 2 as to whether a sentence holds (h), doesn't hold (dh) or one can't tell (ct).

Name	Formula	CL	Ap. 1	Ap. 2				
Introductory examples								
Excluded Middle	$A \lor \sim A$	h	h	h				
Contradiction	$A \wedge \sim A$	dh	dh	dh				
Contingent Conjunction	$A \wedge B$	ct	ct	ct				
Block	1: Basic princip	les						
Negated Identity	$\sim (A \rightarrow A)$	dh	ct	dh				
Conjunction Elimination	$(A \land B) \rightarrow A$	h	h	h				
Contingent Conditional	$A \rightarrow B$	ct	ct	ct				
Self-negated Conditional	$A \rightarrow \sim A$	ct	dh	dh				
Identity	$A \rightarrow A$	h	h	h				
Arbitrary Fallacy	$A \rightarrow (A \wedge B)$	ct	ct	ct				
Aristotle's Thesis'	$\sim (A \rightarrow \sim A)$	ct	h	h				
Aristotle's Thesis	$\sim (\sim A \rightarrow A)$	ct	h	h				

Predictions (2/3)

Name	Formula	CL	Ap. 1	Ap. 2
Block 2	2: Conjunctive principles			
Negated Abelard's First Principle	$(A \rightarrow B) \land (A \rightarrow \sim B)$	ct	ct	dh
Contingent Conditionals	$(A \rightarrow B) \land (A \rightarrow B)$	ct	ct	ct
Abelard's First Principle	${\sim}((A \to B) \land (A \to {\sim}B))$	ct	h	h
Aristotle's Second Thesis	$\sim ((A \rightarrow B) \land (\sim A \rightarrow B))$	ct	ct	ct
Contradicting Conditionals	$(A \rightarrow B) \land \thicksim(A \rightarrow B)$	dh	dh	dh
Block	3: Iterated principles I			
Iterated Self-negated Conditional	$(A \rightarrow B) \rightarrow \sim (A \rightarrow B)$	ct	dh	dh
Boethius' Thesis	$(A \rightarrow B) \rightarrow \sim (A \rightarrow \sim B)$	ct	h	h
Iterated Aristotle's Thesis	$\sim (\sim (A \to B) \to (A \to B))$	ct	h	h
Iterated Identity	$(A \rightarrow B) \rightarrow (A \rightarrow B)$	h	h	h
Reversed Boethius' Thesis	$\sim (A \rightarrow \sim B) \rightarrow (A \rightarrow B)$	h	ct	h
Boethius Variation 3	$(A \rightarrow B) \rightarrow \sim (\sim A \rightarrow B)$	ct	ct	ct
Improper Transposition $(1/2)$	$(A \rightarrow B) \rightarrow (\sim A \rightarrow \sim B)$	ct	ct	ct

Experiment

Predictions (3/3)

Name	Formula	CL	Ap. 1	Ap. 2
Bloc				
Iterated Aristotle's Thesis'	$\sim ((A \rightarrow B) \rightarrow \sim (A \rightarrow B))$	ct	h	h
Improper Transposition (2/2)	$(A \rightarrow B) \rightarrow (\sim A \rightarrow \sim B)$	ct	ct	ct
Denying a Conjunct	$\sim (A \land B) \rightarrow (\sim A \rightarrow B)$	ct	ct	ct
Boethius' Thesis'	$(A \rightarrow \sim B) \rightarrow \sim (A \rightarrow B)$	ct	h	h
Reversed Boethius' Thesis'	$\sim (A \rightarrow B) \rightarrow (A \rightarrow \sim B)$	h	ct	h
Symmetry	$(A \rightarrow B) \rightarrow (B \rightarrow A)$	ct	ct	ct
Boethius Variation 4	$(\sim A \rightarrow B) \rightarrow \sim (A \rightarrow B)$	ct	ct	ct

Participants

Online questionnaire hosted by soscisurvey.de, filled-in in class.

Experiment 1:

- > 26 students of the Universities of Vienna and Regensburg.
- Introductory examples + tasks from Block 1: Basic principles and Block 2: Conjunctive principles (n₁ = 26).

Experiment 2:

- ▶ 46 students of the Universities of Regensburg and Münster.
- Introductory examples + tasks from Block 1: Basic principles $(n_2 + n_3 = 46)$.
- Randomly split between Block 3: Iterated principles I (n₂ = 21) and Block 4: Iterated principles II (n₃ = 25).

Method (1/3)

Vignette story: Ida works at a machine which produces playing blocks. Each of these blocks has a shape (*cylinder, cube, ball*) and a size (*small, large*), and the machine to produce blocks in all combinations of these shapes and sizes. (see e.g., Pfeifer & Tulkki 2017)

Method (1/3)

Vignette story: Ida works at a machine which produces playing blocks. Each of these blocks has a shape (*cylinder, cube, ball*) and a size (*small, large*), and the machine to produce blocks in all combinations of these shapes and sizes. (see e.g., Pfeifer & Tulkki 2017)

Ida is waiting in front of the machine and considers the following sentence: **(C)** If the next playing block is *small*, **then** it is **not** *small*.

Method (1/3)

Vignette story: Ida works at a machine which produces playing blocks. Each of these blocks has a shape (*cylinder, cube, ball*) and a size (*small, large*), and the machine to produce blocks in all combinations of these shapes and sizes. (see e.g., Pfeifer & Tulkki 2017)

Ida is waiting in front of the machine and considers the following sentence: **(C)** If the next playing block is *small*, **then** it is **not** *small*.

Sample Task: Self-negated conditional, $A \rightarrow \sim A$

Method (2/3)

Ida is waiting in front of the machine and considers the following sentence: **(C)** If the next playing block is *small*, **then** it is **not** *small*.

From here, we first asked participants:

Can Ida even know anything about whether the underlined sentence (C) holds? Please pay attention solely to the structure of the sentence (C).

□ NO, as the underlined sentence (C) could hold or not hold. □ YES, Ida can know something about whether the underlined sentence (C) holds.

Method (2/3)

Ida is waiting in front of the machine and considers the following sentence: (C) If the next playing block is *small*, then it is not *small*.

From here, we first asked participants:

Can Ida even know anything about whether the underlined sentence (C) holds? Please pay attention solely to the structure of the sentence (C).

 \square NO, as the underlined sentence (C) could hold or not hold. \square YES, Ida can know something about whether the underlined sentence (C) holds.

And if they answered affirmatively:

What can Ida know about whether the underlined sentence (C) holds? Please pay attention solely to the structure of the sentence (C).

□ The underlined sentence (C) does NOT hold.
 □ The underlined sentence (C) holds.

Method (3/3)

We presented more complex formulae in a two-step, colour-coded fashion:

Ida is waiting in front of the machine and considers the following sentences:
(A) If the next playing block is a *ball*, then it is *small*.
(B) If the next playing block is a *ball*, then it is not *small*.

Now Ida considers the following, combined sentence: (C) It is not the case, that both (A) and (B).

Or spelled-out: (C) It is not the case, that both if the next playing block is a *ball*, then it is *small* and if the next playing block is a *ball*, then it is not *small*.

Sample task: Abelard's first principle, $\sim ((A \rightarrow B) \land (A \rightarrow \sim B))$

Results (1/4)

Table: Response frequencies (in %) in both experiments. The formatting marks predictions by classical logic, *Approach 1* and **Approach 2**.

Name	Holds	Doesn't hold	Can't tell				
Introductory examples, $n_1 = 26$							
Excluded Middle	<u>69.23</u>	3.85	26.92				
Contradiction	3.85	<u>61.54</u>	34.62				
Contingent Conjunction	—	—	<u>53.85</u>				
Block 1: Ba	Block 1: Basic principles, $n_1 = 26$						
Negated Identity	19.23	65.38	15.38				
Conjunction Elimination	<u>88.46</u>	11.54	0.00				
Contingent Conditional	11.54	26.92	61.54				
Self-negated Conditional	0.00	84.61	15.38				
Identity	<u>92.31</u>	0.00	7.69				
Arbitrary Fallacy	7.69	15.38	76.92				
Aristotle's Thesis'	57.69	23.08	19.23				
Aristotle's Thesis	53.85	34.62	11.54				

Results (2/4)

Name	Holds	Doesn't hold	Can't tell					
Introductory examples, $n_2 + n_3 = 46$								
Excluded Middle	73.91	4.35	21.74					
Contradiction	6.52	<u>73.91</u>	19.57					
Contingent Conjunction	—		<u>56.52</u>					
Block 1: Basic	Block 1: Basic principles, $n_2 + n_3 = 46$							
Negated Identity	31.74	<u>63.04</u>	15.22					
Conjunction Elimination	<u>86.96</u>	2.17	10.87					
Contingent Conditional	0.00	8.70	<u>91.30</u>					
Self-negated Conditional	0.00	80.43	<u>19.57</u>					
Identity	<u>86.96</u>	8.70	4.35					
Arbitrary Fallacy	2.17	10.87	<u>86.96</u>					
Aristotle's Thesis'	56.52	30.43	<u>13.04</u>					
Aristotle's Thesis	67.39	26.09	6.52					

Results (3/4)

Name	Holds	Doesn't hold	Can't tell				
Block 2: Conjunctive principles, $n_1 = 26$							
Negated Abelard's 1st principle	15.38	65.38	<u>19.23</u>				
Contingent Conditionals	15.38	19.23	<u>65.38</u>				
Abelard's 1st principle	50.00	26.92	23.08				
Aristotle's second Thesis	30.77	11.54	<u>57.69</u>				
Contradicting Conditionals	23.08	<u>46.15</u>	30.77				

Results (4/4)

Name	Holds	Doesn't hold	Can't tell				
Block 3: Iterated principles I, n ₂ = 21							
Iterated Self-negated Conditional	4.76	66.67	<u>28.57</u>				
Boethius' Thesis	57.14	28.67	<u>14.29</u>				
Iterated Aristotle's Thesis	47.62	23.81	<u>28.57</u>				
Iterated Identity	<u>61.90</u>	4.76	33.33				
Reversed Boethius' Thesis	<u>71.43</u>	9.52	19.05				
Boethius Variation 3	28.57	14.29	<u>57.14</u>				
Improper Transposition $(1/2)$	14.29	9.52	<u>76.19</u>				
Block 4: Iterated	principles	5 2, n ₃ = 25					
Iterated Aristotle's Thesis'	52.00	12.00	36.00				
Improper Transposition (2/2)	8.00	24.00	68.00				
Denying a Conjunct	0.00	16.00	84.00				
Boethius' Thesis'	48.00	24.00	28.00				
Reversed Boethius' Thesis'	<u>64.00</u>	16.00	20.00				
Symmetry	44.00	16.00	<u>40.00</u>				
Boethius Variation 4	32.00	16.00	<u>52.00</u>				

- Tension between human intuition and the predictions of classical logic for self-negating conditionals and connexive principles.
- Coherence-based probability semantics validates connexive principles which matches human intuition.
- We tested a variety of relevant propositional formulae in two experiments where participants judged that they hold, that they do not hold or that one cannot tell whether they hold.
- Among the three contestants, Approach 2 had the best agreement with the data, Approach 1 came second and classical logic last by far.
- ▶ Sole problematic data: Symmetry, $(A \rightarrow B) \rightarrow (B \rightarrow A)$

Other results

Table: Self-assessment (confidence, difficulty and clarity from 0 to 100) and sum of dwell times in experiment 1 (n = 26).

Value	Minimum	Mean	SD	Maximum
Confidence	11.00	52.46	23.76	88.00
Difficulty	9.00	42.58	20.26	91.00
Clarity	7.00	59.81	26.95	100.00
Time (in mm:ss)	08:55	14:52	02:54	20:14

Table: Self-assessment (confidence, difficulty and clarity from 0 to 100) and sum of dwell times in experiment 2 ($n_2 + n_3 = 46$).

Value	Minimum	Mean	SD	Maximum
Confidence	5.00	55.24	25.43	91.00
Difficulty	5.00	39.35	16.26	85.00
Clarity	0.00	66.91	26.44	100.00
Time (in mm:ss)	10:06	14:27	02:15	18:22

References

- Angelo Gilio & Giuseppe Sanfilippo (2014) Conditional random quantities and compounds of conditionals
- Niki Pfeifer & Giuseppe Sanfilippo (2021) Interpreting connexive principles in coherence-based probability logic
- Storrs McCall (2012) A history of connexivity
- Niki Pfeifer (2012) Experiments on Aristotle's Thesis
- Niki Pfeifer & Richard Stöckle-Schobel (2015) Uncertain Conditionals and Counterfactuals in (Non-) Causal Settings
- Niki Pfeifer & Leena Tulkki (2017) Conditionals, counterfactuals, and rational reasoning: An experimental study on basic principles
- Niki Pfeifer & Hiroshi Yama (2017) Counterfactuals, indicative conditionals, and negation under uncertainty: Are there cross-cultural differences?