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Outline
• We recall the three levels of knowledge on events (de Finetti 1980), with
a hint on the extension to conditional events;

• We describe different equivalent schemes for making conditional probabil-
ity assessments, in particular conditional bets and bets on conditionals;

• We show the equivalence among conditions of coherence based on
random gains and geometrical conditions based on convex hulls;

• We show that the conjunction coincides with many (apparently dif-
ferent) conditional random quantities; we examine a criticism by Dorothy
Edgington and we illustrate the characterization of p-entailment of Adams;

• We briefly examine some intuitively valid probabilistic assertions on
complex sentences which we formalize by iterated conditionals;

• We give a look at some basic logical and probabilistic properties valid for
unconditional events, preserved in our approach to compound conditionals,
which are not satisfied in general in the setting of trivalent logics.
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The three levels of knowledge on events

Given any event E, in the paper

B. de Finetti (1980), Probabilitá, Enciclopedia, 1146 - 1187, Einaudi

are illustrated ”three levels of knowledge” on E: Level 0, or 1, or 2.

Level 0, logical point of view: E can be false, 0, or true, 1.

Level 1, cognitive point of view: E can be false, 0, or uncertain, ?, or true, 1.

Level 2, psychological (subjective) point of view: in case of certainty
E is false, 0, or true, 1. In case of uncertainty, E is considered with a
(subjective) probability 0 ≤ P (E) ≤ 1.

These levels of knowledge, under study in a joint (working) paper with
N. Pfeifer, D. Over, G. Sanfilippo, and myself, are discussed in

D.E. Over and J. Baratgin (2016), The “defective” truth table: its past,
present, and future, N. Galbraith, D. Over, and E. Lucas, editors, The
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Thinking Mind: The use of thinking in everyday life, pages 15–28, Psychol-
ogy Press

and

J. Baratgin, G. Politzer, D.E. Over, and T. Takahashi (2018), The psychol-
ogy of uncertainty and three-valued truth tables, Frontiers in Psychology,
9:1479.

Given a family of n events F = {E1, . . . , En}, we can say that:

- we stay at Level 0 on F if we stay at Level 0 on each E ∈ F ;

- we stay (partially) at Level 1 on the family F if we stay at Level 1
on some event E ∈ F ;

- we stay (partially) at Level 2 on F if we stay at Level 2 on some
E ∈ F .

The analysis of Levels 0, 1, 2 could be extended to a conditional event
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A|H, by considering the associated partition π = {AH,AH,H}.

- we stay at Level 0 on A|H when we stay at Level 0 on π, in which
case we know that A|H is true, or we know that it is false, or we know that
it is void.

- we stay at Level 1 on A|H when we stay at Level 1 on π; that is,
we are uncertain, among the three possible cases, AH,AH,H, as to which
is the true one.

- we can move at Level 2 in different ways when we represent uncer-
tainty by probabilities.

We observe that P (A) = P (A|Ω) = P (A |A ∨ A), that is P (A) repre-
sents the uncertainty of A with respect to the two alternatives A, or A.

Similarly, P (A|H) represents the conditional uncertainty of AH with respect
the two alternatives AH, or AH. Indeed,

P (A|H) = P (AH|H) = P (AH |AH ∨AH) .
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In particular, if we represent our uncertainty on AH and AH by P (AH) and
P (AH), then P (A|H) is uniquely determined, when P (AH)+P (AH) > 0,
by the formula

P (A|H) = P (AH |AH ∨AH) =
P (AH)

P (AH) + P (AH)
.

When P (AH) = P (AH) = 0 we need a direct evaluation of P (A|H).

A similar analysis applies in order to represent other conditional uncer-
tainties.

Notice that in some papers by Gilio & Sanfilippo, see e.g.

A. Gilio and G. Sanfilippo (2014). Conditional random quantities and
compounds of conditionals. Studia Logica, 102(4): 709 - 729,

compound conditionals, such as conjunctions and disjunctions, are de-
fined (not as three-valued objects, but) as suitable conditional random
quantities, where some of their values are (coherent) probability values.
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For instance, given two conditional events A|H and B|K, if we assess
P (A|H) = x, P (B|K) = y, then the possible values of the conjunction
(A|H) ∧ (B|K) are 1, 0, x, y, z, where z is our assessed prevision of
(A|H) ∧ (B|K).

In our approach compound conditionals are directly defined at Level 2.

A general approach to compound conditionals has been developed in

T. Flaminio, A. Gilio, L. Godo, and G. Sanfilippo, Compound conditionals
as random quantities and Boolean algebras, 19th Int. Conf. on Principles
of Knowledge Representation and Reasoning, KR 2022, July 31 - August 5,
2022, Haifa, Israel.
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Some basic aspects on coherence

Coherence-based probability theory of de Finetti:

Probabilities are (coherent) numerical measures of degrees of belief.

Betting framework. Given any (finite) random quantity X, if for its
prevision you assess P(X) = µ, then you accept a bet by agreeing to pay
(resp., to receive) an amount sµ, with s an arbitrary real number, and to
receive (resp., to pay) the random amount sX.

Random gain: G = sX − sµ; Coherence: min G ≤ 0 ≤ max G.

Conditional bets. Given a (finite) random quantity X and an event
H ̸= ∅, if you assess P(X|H) = µ, then you accept a bet on X which
becomes effective if H is true. If H is true you pay an amount sµ by
receiving the random amount sX. If H is false the bet has no effect.

Random gain. H true: GH = sX − sµ; H false: there is no bet.

Coherence: min GH ≤ 0 ≤ max GH.
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Bets on conditionals (equivalent). If you assess P(X|H) = µ, then you
agree to pay sµ; if H is true, you receive sX; if H is false, you receive back
the paid amount sµ (bet called off).

In other words (as made in the approaches by Gilio & Sanfilippo, and
by F. Lad), by defining

X|H = XH + µH , where µ = P(X|H) ,

the bet on X|H works as follows:

if you assess P(X|H) = µ , then you pay the amount sµ, by receiv-
ing the random amount sX|H = s(XH + µH).

Random gain: G = sX|H−sµ = sH(X−µ) ; H true: GH = sX−sµ.

Coherence Principle:

(i) we discard all the cases where we receive back the paid amount sµ,
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whatever it be (that is, we discard the case where H is false);

(ii) the assessment is coherent if in the remaining cases (where the bet has
effect) it does not happen that you obtain a sure loss (no Dutch book).

By condition (i), for checking coherence we must refer to GH.

- Assume, for instance, that the set of possible values of X, when H
is true, is {x1, . . . , xn}; then

X|H = XH + µH ∈ {x1, . . . , xn, µ} ;

the coherence of µ amounts to: min GH ≤ 0 ≤ max GH,
or, equivalently

min {x1, . . . , xn} ≤ µ ≤ max {x1, . . . , xn}.

Indeed,

GH ∈ {g1, . . . , gn} , where: gh = sxh − sµ, h = 1, . . . , n,
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and the condition

min
h

(sxh − sµ) ≤ 0 ≤ max
h

(sxh − sµ) , ∀h , ∀ s ,

is satisfied if and only if : min {x1, . . . , xn} ≤ µ ≤ max {x1, . . . , xn}.

GH is the restriction to H of the random gain

G = sX|H − sµ = sH(X − µ) ∈ {g1, . . . , gn, 0}.

Conditional probability assessments.
Concerning in particular a conditional probability assessment P (A|H) = x,
by de Finetti theory we can use a scheme S1, where we can consider
conditional bets, or bets on conditionals (a further equivalent scheme S2
will be considered later).

S1. Let P (A|H) = x be your (numerical measure for the) degree of
belief on A, assessed when H is uncertain, by supposing H true (and
nothing else more).
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Conditional bet: ”if H is true, I bet on A”.

(B. de Finetti (1936), “La logique de la probabilité”, in, Actes du Congrès
International de Philosophie Scientifique, Vol. IV, Paris: Hermann et C.ie,
1-8)

After knowing that H is true, you pay (resp., receive) x by receiving
(resp., pay) A. If H is false, the bet is cancelled.

Bet on the conditional ”if H, then A”.

(B. de Finetti (1937), “La prévision : ses lois logiques, ses sources subjec-
tives”, Annales de l’Institut Henri Poincaré, Tome 7 (1), 1-68.)

If you assess P (A|H) = x, you pay (resp., you receive) x by receiving
(resp., by paying) 1, or 0, or x, according to whether AH is true, or AH
is true, or H is true, respectively. The case H is discarded (bet called off)
because, when H is true, you receive back the paid amount x.

Conditional bets and bets on conditionals are equivalent!
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Prevision assessments on random vectors

We now consider prevision assessments on two conditional random quanti-
ties and we show that the conditions of coherence based on random gains
are equivalent to suitable geometrical conditions based on convex hulls.

Given two events H ̸= ∅,K ̸= ∅ and two random quantities X,Y ,
let P = (µ, η) be a prevision assessment on F = {X|H,Y |K}, with
µ = P(X|H), η = P(Y |K). Moreover, denote by {(x1, y1), . . . , (xm, ym)}
the set of possible values of the random vector (X|H,Y |K) when H ∨K
is true.

Notice that, if HK ̸= ∅, and/or HK ̸= ∅, then there are possible val-
ues like (µ, yj), and/or (xi, η), for some indices i, j.

In a bet associated with the pair (F ,P) the random gain is

G = s1H(X − µ) + s2K(Y − η) = s1(X|H − µ) + s2(Y |K − η) =

= (s1X|H + s2Y |K)− (s1µ+ s2η), s1, s2 arbitrary real numbers,
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which is the difference between what you receive, s1X|H + s2Y |K, and
what you pay, s1µ+ s2η.

Coherence: when H ∨ K is false you receive back the paid amount
s1µ+ s2η; then, for checking coherence we must only consider the values of
the restriction of G toH∨K, GH∨K, that is, we must discard the caseHK.

- Possible values of GH∨K: we set Qh = (xh, yh), h = 1, . . . ,m; then, by
considering the linear function f(x, y) = s1x+ s2y, the value gh of GH∨K

associated with Qh is

gh = (s1xh + s2yh)− (s1µ+ s2η) = f(Qh)− f(P) , h = 1, . . . ,m.

Then, the condition of coherence min GH∨K ≤ 0 ≤ max GH∨K, that
is

min
h

gh ≤ 0 ≤ max
h

gh , ∀ s1, s2,
becomes

min
h

f(Qh) ≤ f(P) ≤ max
h

f(Qh) , ∀ s1, s2,
which is satisfied if and only if P belongs to the convex hull I of Q1, . . . , Qm,

13



that is

P =

m∑
h=1

λhQh ,

m∑
h=1

λh = 1 , λh ≥ 0 , h = 1, . . . ,m.

Indeed:

• if P =
∑m

h=1 λhQh then, by observing that

m∑
h=1

λhf(Qh) = f(

m∑
h=1

λhQh) = f(P) , ∀ s1, s2 ,

it holds that

min
h

f(Qh) ≤ f(P) ≤ max
h

f(Qh) , ∀ s1, s2 ,

that is: min GH∨K ≤ 0 ≤ max GH∨K.
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• if P /∈ I there exists a line, with equation ax + by = c, which
separates P from the convex hull I. Then, by choosing s1 = a, s2 = b, and
by considering the linear function f(x, y) = s1x + s2y, exactly one of the
following alternatives holds:

(i) f(P) < c < min
h

f(Qh) , (ii) f(P) > c > max
h

f(Qh) .

As a consequence, when s1 = a and s2 = b, the condition

min
h

f(Qh) ≤ f(P) ≤ max
h

f(Qh)

does not hold and the coherence condition

min GH∨K ≤ 0 ≤ max GH∨K , ∀ s1, s2 ,

is not satisfied. We illustrate this aspect by an example.

Example. Let be given the probability assessment P = (0.3, 0.8)
on the family F = {B|AHK , AHBK|(HK ∨ AH ∨ BK)}, where
P (B|AHK) = 0.3, P (AHBK|(HK ∨AH ∨BK)) = 0.8.
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Figure 1: Convex hull I of the points Q1, Q2, Q3, a triangle.

As shown in Figure 1, the possible values of the random vector
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(B|AHK,AHBK|(HK ∨AH ∨BK)) are:

Q1 = (1, 1) , Q2 = (0.3, 0) , Q3 = (0, 0) , Q0 = P = (0.3, 0.8) ,

and P does not belong to the convex hull I of Q1, Q2, Q3.

For instance, the line with equation x − y = − 0.3 separates P from
I. In this case

s1 = 1 , s2 = −1 , f(x, y) = x− y , f(P) = 0.3− 0.8 = −0.5 .

Then P is not coherent because

g1 = f(Q1)− f(P) = 0 + 0.5 = 0.5 > 0,

g2 = f(Q2)− f(P) = 0.5 + 0.5 = 1 > 0,

g3 = f(Q3)− f(P) = 0 + 0.5 = 0.5 > 0.
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Notice that in the trivalent logic of de Finetti it holds that

B|AHK = (B|K)|df(A|H) , AHBK|(HK∨AH∨BK) = (A|H)∧df(B|K) .

Moreover: B|AHK ≥ AHBK|(HK ∨AH ∨BK).

Thus, every assessment P = (x, y) on F is coherent if and only if x ≥ y.

Remark. The definition of X|H and Y |K as the random quanti-
ties

X|H = XH + µH , Y |K = Y K + ηK ,

where µ = P(X|H) and η = P(Y |K), allows to introduce the points Qh’s,
by then obtaining some advantages; for instance:

- we can develop a geometrical approach to the checking of coherence;

- we can represent the possible values gh’s of the random gain GH∨K as the
difference f(Qh)−f(P), where f is the linear function: f(x, y) = s1x+s2y;
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- we can illustrate the equivalence between the conditions:

(i) min GH∨K ≤ 0 ≤ max GH∨K , (ii) P ∈ I ;

- In particular, the numerical counterpart for the value ”void” of A|H is
P (A|H); indeed, in the case of conditional events, the components of the
points Qh’s are the possible values of the indicators.

The points Qh’s were introduced in

A. Gilio, Criterio di penalizzazione e condizioni di coerenza nella valu-
tazione soggettiva della probabilitá, Bollettino U.M.I., 645–660, 1990,

where the geometrical approach of de Finetti was extended to the case
of conditional events, by suitably modifying the definition of coherence with
the penalty criterion.
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A further scheme for conditional probability assessments

We describe a further scheme S2, equivalent to S1 (conditional bets and
bets on conditionals).

(S2). The evaluation of P (A|H) amounts to deciding, under the usual
condition of coherence, the value y that you agree to pay in order to receive
the random quantity AH + yH.

In other words, you must choose y such that y = P(AH + yH).

Given any events A and H, with H ̸= ∅, let us consider the assess-
ment P = (x, y) on F = {A|H,AH + yH}, where x = P (A|H) and
y = P(AH + yH).

Does coherence require that some relationship be satisfied by x and y ?
YES: x = y.

First of all, coherence requires that: 0 ≤ y ≤ 1.

Indeed, by defining Y = AH + yH, in a bet associated with the as-
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sessment P(Y ) = y you pay, for instance, y by receiving 1, or 0, or y,
according to whether AH is true, or AH is true, or H is true, respectively.

In the case H you receive back the paid amount y; hence this case is
discarded (bet called off). Then, by coherence: y ∈ [0, 1].

Moreover, by considering the prevision assessment (x, y) on {A|H,Y },
(under logical independence of A and H) the constituents are C1 =
AH , C2 = AH , C0 = H, and the associated possible values of the
random vector (A|H,Y ) are:

Q1 = (1, 1) , Q2 = (0, 0) , Q0 = (x, y) = P .

In a bet relative to the assessment P = (x, y) the random gain is

G = (s1A|H + s2Y )− (s1x+ s2y), (s1, s2 arbitrary real numbers),

with the received amount s1A|H+s2Y equal to the paid amount s1x+s2y
when C0 is true.
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Therefore C0 must be discarded, that is we must consider the restricted
random gain GH; hence, we must check the condition P ∈ I, where the
convex hull I is the segment Q1Q2. Then,

(x, y) coherent ⇐⇒ 0 ≤ x = y ≤ 1 .

Therefore, in order to assess P (A|H), S1 and S2 are equivalent.

I recall that, within S1, you can consider a bet on the conditional ”if
H, then I bet on A”, or a conditional bet on ”if H, then A”.

Within S2, P (A|H) is the amount y that you agree to pay (resp., re-
ceive) by receiving (resp., paying) the random amount AH + yH.

Coherence: the case H is discarded, because when H is false you re-
ceive back the paid amount y.

By a similar reasoning, a conditional prevision assessment P(X|H) = µ
can be made by the scheme S1, with a conditional bet, or a bet on a

22



conditional, or equivalently by the scheme S2.

S1. You assess P(X|H) = µ, by supposing H true. Then, if H is
true, you pay µ and you receive X. If H is false, the bet has no effect.

Equivalently, you pay µ by receiving X if H is true, or by receiving
back µ if H is false (in this case the bet is called off).

Denoting by S, for instance S = {x1, . . . , xn}, the set of possible val-
ues of X when H is true, coherence requires that:

min S = min {x1, . . . , xn} ≤ µ ≤ max {x1, . . . , xn} = max S .

S2. You assess the prevision of Y = XH + yH, under the condition that
y = P(Y ).

In a bet associated with the assessment P(Y ) = y, you pay y, by re-
ceiving X ∈ {x1, . . . , xn} when H is true, or by receiving back the paid
amount y when H is false.
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By coherence, the case H must be discarded, so that:

min {x1, . . . , xn} ≤ y ≤ max {x1, . . . , xn} .

In order to verify that y = µ, let us consider the prevision assessment
P = (µ, y) on the family F = {X|H,Y }. We observe that, when H is
true, it holds that (X|H,Y ) ∈ {(x1, x1), . . . , (xn, xn)}; when H is false,
(X|H,Y ) = (µ, y).

In a bet associated with P, the random gain is

G = (s1X|H + s2Y )− (s1µ+ s2y), (s1, s2 arbitrary real numbers),

with the bet called off when H is false, because in this case you receive
back the paid amount s1µ+ s2y.

When H is true the bet has effect and the possible values of the ran-
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dom vector (X|H,Y ) are

Q1 = (x1, x1) , . . . , Qn = (xn, xn) .

Then, the condition P ∈ I is satisfied (that is, P is coherent) if and only if

min {x1, . . . , xn} ≤ µ = y ≤ max {x1, . . . , xn} .
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Compound prevision theorem: P(XH) = P(X|H)P (H)
Given an event ∅ ≠ H ̸= Ω and a (finite) random quantity X, denote by
{x1, . . . , xn} the set of possible values of X when H is true.

The assessment (u, v, z) on {H, X|H, XH} is coherent if and only if
:
(i) 0 ≤ u ≤ 1, (ii) min {x1, . . . , xn} = x′ ≤ v ≤ x′′ = max {x1, . . . , xn},
and (iii) z = uv. Indeed:

- the condition (i) amounts to coherence of the assessment P (H) = u;

- the condition (ii) amounts to coherence of the assessment P(X|H) = v;

- the possible values of the random vector (H,X|H) are:
(1, x1), . . . , (1, xn), (0, v),, with a convex hull given by the triangle T
with vertices (0, v), (1, x′), (1, x′′);

- each point (u, v) satisfying conditions (i) and (ii) belongs to T ;

- then, coherence of (u, v) amounts to conditions (i) and (ii);
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- concerning the extension z = P(XH), the possible values of the ran-
dom vector (H,X|H,XH) are:

Q1 = (1, x1, x1) , . . . , Qn = (1, xn, xn) , Qn+1 = (0, v, 0) ;

- the condition P ∈ I (convex hull of Q1, . . . , Qn+1) means that

P = λ1Q1+ · · ·+λnQn+λn+1Qn+1 , λ1+ · · ·+λn+1 = 1 , λh ≥ 0 , ∀h ,

which amounts to solvability of the system u = λ1 + · · ·+ λn,
v = λ1x1 + · · ·+ λnxn + λn+1v = z + (1− u)v ,
z = λ1x1 + · · ·+ λnxn .

Therefore: z = xy, that is P(XH) = P(X|H)P (H) (compound prevision
theorem).

In particular: P (AH) = P (A|H)P (H) (compound probability theorem).
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Conjunctions and conditional random quantities
Given two conditionals (if H then A) and (if K then B), how can we
interpret their conjunction (if H then A) & (if K then B)?

In the large part of research on trivalent logics the conjunction is de-
fined as a suitable three-valued object, i.e. still a conditional.

In the approach by Gilio & Sanfilippo, conditionals are interpreted as
conditional events and the conjunction (A|H) ∧ (B|K) is defined in the
setting of coherence (not as a three-valed object, but) as the following
conditional random quantity

(A|H) ∧ (B|K) =


1, if AHBK is true,
0, if AH ∨BK is true,
x, if HBK is true,
y, if AHK is true,
z, if HK is true,

where, by definition: z = P[(A|H) ∧ (B|K)].
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Thus, in a bet associated with the assessment z = P[(A|H) ∧ (B|K)],
the quantity z is the amount to be paid in order to receive the random
amount (A|H) ∧ (B|K).

Related notions have been given in:

S. Kaufmann (2009), Conditionals right and left: Probabilities for the
whole family, Jour- nal of Philosophical Logic, 38:1-53.

V. McGee (1989), Conditional probabilities and compounds of conditionals,
Philosophical Review, 98(4):485-541.

We show below that the conjunction (A|H) ∧ (B|K) coincides with many
(apparently different) conditional random quantities.

We recall that, given a coherent assessment P (A|H) = x, P (B|K) = y,
the indicators of A|H and B|K are

A|H = AH + xH , B|K = BK + yK .
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Now, let us consider for instance the random quantities:

Z1 = AHBK + xHBK + yAHK , Z2 = max {A|H +B|K − 1, 0} ,
Z3 = (A|H) · (B|K) , Z4 = min {A|H,B|K} .

We observe that, when H ∨K is true, it holds that

Z1 = Z2 = Z3 = Z4 = AHBK + xHBK + yAHK ∈ {1, 0, x, y} ;

When H ∨K is false, it holds that

Z1 = 0 , Z2 = max {x+ y − 1, 0} , Z3 = xy , Z4 = min {x, y} ,

where

0 ≤ max {x+ y − 1, 0} ≤ xy ≤ min {x, y} ,
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so that: Z1 ≤ Z2 ≤ Z3 ≤ Z4. However

Z1|(H ∨K) = · · · = Z4|(H ∨K) = (A|H) ∧ (B|K) .

This result follows by considering the following question:

Does it make any difference between (A|H) ∧ (B|K) and any random
quantity Y defined as

Y =


1, if AHBK is true,
0, if AH ∨BK is true,
x, if HBK is true,
y, if AHK is true,
µ, if HK is true,

= AHBK+xHBK+yAHK+µH K ,

where µ = P(Y ) = P(AHBK+xHBK+yAHK+µH K) by definition?

The answer is NO. Indeed

µ = z = P[(A|H) ∧ (B|K)] and Y = (A|H) ∧ (B|K) .
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Indeed, the possible values of the random vector ((A|H) ∧ (B|K), Y ) are
the points Qh’s associated with the prevision assessment P = (z, µ) on the
family F = {(A|H) ∧ (B|K) , Y }, that is:

Q1 = (1, 1) , Q2 = (0, 0) , Q3 = (x, x) , Q4 = (y, y) , Q0 = (z, µ) = P .

As we can see, when H ∨K is true, it holds that

(A|H) ∧ (B|K) = Y = AHBK + xHBK + yAHK ∈ {1, 0, x, y}

thus, denoting by I the convex hull of Q1, Q2, Q3, Q4, it holds that

P ∈ I ⇐⇒ z = µ .

Therefore, for each given assessor who evaluates P[(A|H) ∧ (B|K)] = z,
the quantity µ such that

µ = P(Y ) = P (AHBK + xHBK + yAHK + µHK)
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is uniquely determined and coincides with z.

Thus, for each i = 1, 2, 3, 4, it holds that

(A|H)∧(B|K) = Zi | (H∨K) = (AHBK+xHBK+yAHK) | (H∨K) .

Actually, given any random quantity

Z = AHBK + xHBK + yAHK + tH K , (t arbitrary real number)

it holds that: (A|H) ∧ (B|K) = Z | (H ∨K).

In (Gilio & Sanfilippo, 2014), by generalizing the formula

(A|H)∧(B|H) = AB|H = min {A|H,B|H}|H = min {A|H,B|H}|(H∨H) ,

the conjunction was defined as

(A|H) ∧ (B|K) = min {A|H,B|K}|(H ∨K) .
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A remark on coherence

The condition P ∈ I is necessary, but in general not sufficient, for coherence.

For instance, by considering the assessment P = (η, z), where

η = P[max {A|H +B|K − 1, 0}|(H ∨K)] , z = P[(A|H) ∧ (B|K)] ,

it has been shown before that

η = z and max {A|H +B|K − 1, 0}|(H ∨K) = (A|H) ∧ (B|K) .

Indeed, the possible values of the random vector

(max {A|H +B|K − 1, 0}|(H ∨K) , (A|H) ∧ (B|K) )

are:

Q1 = (1, 1) , Q2 = (0, 0) , Q3 = (y, y) , Q4 = (x, x) , Q0 = (η, z) = P .
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The convex hull I of Q1, Q2, Q3, Q4 is the segment with vertices Q1, Q2;
then

P ∈ I ⇐⇒ 0 ≤ η = z ≤ 1 .

But, this condition is not sufficient for coherence. More precisely, in order
to check coherence, also the probabilities P (A|H) = x and P (B|K) = y
must be taken into account.

Under logical independence of A,H,B,K, the assessment (x, y, z, η)
on the family

{A|H , B|K , (A|H) ∧ (B|K) , max {A|H +B|K − 1, 0}|(H ∨K)}

is coherent if and only if

0 ≤ x , y ≤ 1 , max {x+ y − 1, 0} ≤ z = η ≤ min {x, y} .

The previous condition of coherence follows by the result below, given in
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the paper:

A. Gilio, G. Sanfilippo, ”Conditional random quantities and compounds
of conditionals”, Studia Logica 102 (2014) 709-729.

Fréchet-Hoeffding bounds. Given any logically independent events
A,H,B,K, with H ̸= ∅,K ̸= ∅, the probability assessment P (A|H) =
x, P (B|K) = y on {A|H,B|K} is coherent for every (x, y) ∈ [0, 1]2. More-
over, the extension z = P[(A|H) ∧ (B|K)] of (x, y) on (A|H) ∧ (B|K) is
coherent if and only if

max {x+ y − 1, 0} = z′ ≤ z ≤ z′′ = min {x, y} .
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A criticism by D. Edgington

In our approach, when HK = ∅, it holds that

P[(A|H) ∧ (B|K)] = P (A|H)P (B|K) ,

criticized by D. Edgington as a ’strange case’ of independence.

Moreover, when for instance P (A|H) = P (B|K) = 0.5, some authors
”intuitively” evaluate that: P ((A|H) ∧ (B|K)) = P (A|H) = 0.5.

In particular, this evaluation is made for the conjunction (A|H) ∧ (A|H).

Our comments:
- if you want to speak of independence you should preliminarily define this
notion;
- in our framework, A|H, B|K, and (A|H)∧ (B|K) are conditional random
quantities; then, the equality above should perhaps be associated to a case
of uncorrelation (and not independence);
- finally, in our theory, with the conditional events A|H and B|K we
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associate the conditional constituents

(A|H) ∧ (B|K) , (A|H) ∧ (B|K) , (A|H) ∧ (B|K) , (A|H) ∧ (B|K) ,

which satisfy the relations

A|H = (A|H) ∧ (B|K) + (A|H) ∧ (B|K) ,

and
A|H = (A|H) ∧ (B|K) + (A|H) ∧ (B|K) .

Then:
(A|H)∧(B|K) + (A|H)∧(B|K) + (A|H)∧(B|K) + (A|H)∧(B|K) =

= A|H + A|H = 1.

As a consequence, when P (A|H) = P (B|K) = 0.5, by symmetry the
conditional constituents have the same prevision, i.e. 0.25, so that

P[(A|H) ∧ (B|K)] = 0.25 = 0.5× 0.5 = P (A|H)P (B|K) .

This reasoning also applies to the conjunction (A|H) ∧ (A|H).
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Characterization of p-entailment by conjunctions
The property of p-entailment of Adams can be studied with full generality
in the setting of coherence (Gilio 2002), without having to rely on proper
distributions.

Indeed, by exploiting coherence, there is no need of assuming that condi-
tioning events have positive probability.

We also avoid the unnecessary convention that P (B|A) = 1 when
P (A) = 0.

The property of p-entailment for conditional events can be character-
ized by conjunctions in the same way as for unconditional events.

Given a (p-consistent) family of unconditional events F = {E1, . . . , En}
and a further event B, the following assertions are equivalent:

(i) the family F p-entails B; that is

P (E1) = · · · = P (En) = 1 =⇒ P (B) = 1 ;
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(ii) the conjunction E1 · · ·En p-entails B; that is

P (E1 · · ·En) = 1 =⇒ P (B) = 1 ;

(iii) E1 · · ·En ⊆ B, that is E1 · · ·EnB = E1 · · ·En; or, in numerical
terms: E1 · · ·En ≤ B.
Notice that the property (iii) can be written as: P (B|E1 · · ·En) = 1;
or, equivalently: B|E1 · · ·En constant and equal to 1.

With the notion of conjunction given in our approach, the previous charac-
terization of p-entailment still holds when we consider conditional events.

More precisely, given a (p-consistent) family of conditional events F =
{E1|H1, . . . , En|Hn} and a further conditional event B|A, the following
assertions are equivalent:

(i) the family F p-entails B|A; that is

P (E1|H1) = · · · = P (En|Hn) = 1 =⇒ P (B|A) = 1 ;
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(ii) the conjunction (E1|H1) ∧ · · · ∧ (En|Hn) p-entails B|A; that is

P[(E1|H1) ∧ · · · ∧ (En|Hn)] = 1 =⇒ P (B|A) = 1 ;

(iii) (E1|H1) ∧ · · · ∧ (En|Hn) ≤ B|A, or equivalently

(E1|H1) ∧ · · · ∧ (En|Hn) ∧ (B|A) = (E1|H1) ∧ · · · ∧ (En|Hn) .

Notice that, by using iterated conditionals, the property (iii) becomes

(B|A) | [(E1|H1) ∧ · · · ∧ (En|Hn)] = 1 .
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On iterated conditionals and material conditionals
We recall that, given any events A and H ̸= ∅, for the indicator of A|H it
holds that

A|H = AH + P (A|H)H . (1)

Then
AH ≤ A|H ≤ AH ∨H , (2)

and in particular

P (AH) ≤ P (A|H) ≤ P (AH ∨H) , (3)

which shows the relation among the probabilities of the conjunction AH,
the conditional event A|H, and the material conditional AH ∨H.
Notice that, in numerical terms, it holds that: AH ∨H = AH +H.

The previous inequalities also hold for our compound conditionals.

We represent the nested conditional ”if ’A when H’, then ’B when K’”, by
the iterated conditional (B|K)|(A|H) which, based on (1), is defined as

(B|K)|(A|H) = (A|H) ∧ (B|K) + µA|H ,
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where µ = P[(B|K)|(A|H)] ∈ [0, 1].

The associated material conditional, defined as [(A|H) ∧ (B|K)] ∨ (A|H),
by the approach developed in (Flaminio, Gilio, Godo, Sanfilippo, KR 2022)
coincides with

(A|H)∧(B|K)+A|H−(A|H)∧(B|K)∧(A|H) = (A|H)∧(B|K)+A|H ,

which generalizes the formula A ∨B = A+B −AB.

Finally, as µA|H ≤ A|H, we obtain

(A|H) ∧ (B|K) ≤ (B|K)|(A|H) ≤ (A|H) ∧ (B|K) +A|H ,

and in particular

P[(A|H) ∧ (B|K)] ≤ P[(B|K)|(A|H)] ≤ P[(A|H) ∧ (B|K) +A|H] ,

which shows that the properties in (2) and (3) still hold when unconditional
events are replaced by conditional events.
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Another property.

A|H = (A|H) | (A|H) ∨ (A|H) , P (A|H) = P [(A|H) | (A|H) ∨ (A|H)] .

This property can be generalized in the setting of compound conditionals.
Indeed, by observing that

A = A|Ω = A | (A ∨A) , so that P (A) = P (A|Ω) = P (A |A ∨A) ,

it follows that

A|H ∨A|H = Ω|H , (A|H) ∧ (Ω|H) = AΩ|H = A|H , ∅|H = 0 .

Then, denoting by µ the prevision of (A|H) | (A|H) ∨ (A|H), it holds that

(A|H) | (A|H)∨(A|H) = (A|H) | (Ω|H) = (A|H)∧(Ω|H)+µ ∅|H = A|H ,

so that: P (A|H) = P[(A|H) | (A|H ∨A|H)].
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Iterated conditionals allow to generalize the relation A = A | (A ∨ A),
which in the setting of compound conditionals becomes

A|H = (A|H) | (A|H ∨A|H) .

(see Assertion (a) in the next slide)
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On complex sentences and iterated conditionals
We illustrate some results from the paper:

Gilio A, Sanfilippo G (2021), On compound and iterated conditionals,
Argumenta 6(2): 241−266.

Iterated conditionals allow us to give a clear meaning to intuitively valid
assertions; we examine below some instances.

We interpret the conditional “if H then A” as A|H.

We simply denote A|H by C and the negation A|H by C.

We recall that the iterated conditional (B|K) | (A|H) is defined as

(B|K) | (A|H) = (B|K) ∧ (A|H) + µA|H ,

with

(B|K) | (A|H) ∈ {1, 0, y, x+ µ(1− x), µ(1− x), z + µ(1− x), µ} ,
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where

x = P (A|H) , y = P (B|K) , z = P[(B|K)∧(A|H)] , µ = P[(B|K) | (A|H)] ,

and where, by linearity of prevision, z + µ(1− x) = µ, that is: z = µx.

Assertion (a).
The probability of C is (not the probability of its truth, but) the probability
of its truth, given that it is true or false.

’C true’ means ’AH true’; ’C true or false’ means ’AH ∨AH true’.

Then, the complex sentence “if C is true or false, then C is true” is
the conditional “if AH ∨AH is true, then AH is true”, which we represent
by the conditional event

AH|(AH ∨AH) = AH|H = A|H .

Thus

P (C) = P (AH|(AH ∨AH)) = P (A|H) ̸= P (AH) = P (C true) ,
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that is: P (C) is the ’probability of its truth, given that it is true or false’.

Within the formalism of iterated conditionals, as

(A|H) | (A|H)∨(A|H) = (A|H) | (Ω|H) = (A|H)∧(Ω|H)+µ∅|H = A|H ,

it holds that

P (C) = P (A|H) = P[(A|H) | (A|H) ∨ (A|H)] = P (C |C ∨ C) .

Assertion (b).
The probability of “C, given that AH is true” is 1.

We represent the compound conditional “if AH then C” by the iter-
ated conditional (A|H)|AH and we observe that AH ⊆ A|H, so that
(A|H) ∧AH = AH.

Then,

(A|H)|AH = (A|H)∧AH+µAH = AH+µAH , (µ = P[(A|H)|(AH)]) ,
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which is equal to 1, or µ, according to whether AH is true, or false,
respectively.

In a bet on (A|H)|AH we pay µ and we receive 1, if AH is true, or
we receive back µ, if AH is false (in this case the bet is called off).

Then, µ is coherent if and only if µ = 1; thus: (A|H)|(AH) = 1.

A more simple equivalent method: we observe that A|H = AH + xH,
where x = P (A|H); in particular AH|AH = 1 because P (AH|AH) = 1.
Then

(A|H)|AH = (AH+xH)|AH = AH|AH+xH|AH = 1 = P[(A|H)|AH] .

Thus, by interpreting ”if AH then C” as the iterated conditional (A|H)|AH,
it coincides with AH|AH, i.e. with the constant 1, and its probability is 1.

Assertion (c).
The probability of C, given that A is false and H is true, is 0.
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We represent “if AH then C” by the iterated conditional (A|H)|AH.
We set P (A|H) = x; moreover P (AH|AH) = P (H|AH) = 0, so that

AH|AH = H|AH = 0 .

Then

(A|H)|AH = (AH+xH)|AH = AH|AH+xH|AH = 0 = P[(A|H)|AH] .

Thus, by interpreting “if AH then C” as the iterated conditional (A|H)|AH,
it coincides with the constant 0, and its probability is 0.

Assertion (d).
The probability of C, given that H is false, is P (A|H).

We represent ”if H then C” by the iterated conditional (A|H)|H.
We set P (A|H) = x; moreover, we observe that P (AH|H) = 0 and
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P (H|H) = 1, so that

AH|H = 0 , H|H = 1 .

Then

(A|H)|H = (AH+xH)|H = AH|H+xH|H = xH|H = x = P[(A|H)|H] .

Thus, by interpreting “if H then C” as the iterated conditional (A|H)|H, it
coincides with the constant x, and its probability is x = P (A|H).

Assertion (e).
The probability of C, given that H is true, is P (A|H).

We represent ”if H then C” by the iterated conditional (A|H)|H.

We set P (A|H) = x and we observe that H|H = 0.
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Then, it holds that

(A|H)|H = (AH + xH)|H = A|H , and P[(A|H)|H] = P (A|H) .

Thus, by interpreting “if H then C” as the iterated conditional (A|H)|H, it
coincides with A|H, and its probability is P (A|H).

Notice that the conditional “if H then C” is equivalent to the condi-
tional “if C is true or false, then C”.

Assertion (f).
The probability of C , given that “if H then A”, is 1.

We represent “if C then C” by the iterated conditional (A|H)|(A|H).
We recall that (A|H) ∧ (A|H) = A|H. Then

(A|H)|(A|H) = (A|H) ∧ (A|H) + µA|H = A|H + µA|H =
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=


1, if AH is true.
µ, if AH is true,
x+ µ(1− x), if H is true,

where µ = P[(A|H)|(A|H)] and x = P (A|H). We observe that

µ = P[A|H + µ(1−A|H)] = P (A|H) + µ(1− P (A|H)) = x+ µ(1− x) ;

then, (A|H)|(A|H) ∈ {1, µ}.

In a bet on (A|H)|(A|H) we pay µ by receiving 1 when AH is true,
and by receiving back the paid amount µ when AH is false (bet called off).
Then, by coherence, it must be µ = 1.

Thus, by interpreting “if C then C” as the iterated conditional (A|H)|(A|H),
it coincides with the constant 1, and its probability is 1.

Assertion (g).
The probability of C , given that “if H then A”, is 0.

We represent “if (if H then A), then C” as the iterated conditional
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(A|H)|(A|H).
We set P[(A|H)|(A|H)] = µ, P (A|H) = x and we observe that

(A|H) ∧ (A|H) = 0 , A|H = 1−A|H = A|H .

Then: (A|H)|(A|H) = (A|H) ∧ (A|H) + µA|H = µA|H ∈ {µ, 0, µx},

so that: µ = P[(A|H)|(A|H)] = µP (A|H) = µx, that is: (1− x)µ = 0.

If 0 ≤ x < 1, then µ = 0
1−x = 0.

If x = 1, then (A|H)|(A|H) ∈ {0, µ} and, in a bet on (A|H)|(A|H)
we pay, for instance, the amount µ by receiving 0, when AH is true, or by
receiving back the paid amount µ, when AH is false (bet called off).
Then, by coherence, it must be µ = 0.

Thus, by interpreting “if (if H then A), then C” as the iterated con-
ditional (A|H)|(A|H), it coincides with 0, and its probability is 0.

Likewise, by a symmetric reasoning it holds that (A|H)|(A|H) = 0.
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Trivalent logics and compound conditionals

We illustrate below some results from the paper

Gilio A, Sanfilippo G (2022), Subjective probability, trivalent logics and
compound conditionals, (submitted).

Conjoined and disjoined conditionals are defined, by the large part of
authors, as suitable conditional events.

However, when compound conditionals are defined as conditional events
many basic logical and probabilistic properties are lost.

In the paper above we considered the following notions of conjunctions.

- Kleene-Lukasiewicz-Heyting conjunction (∧K), or de Finetti conjunction
(∧df):

(A|H) ∧K (B|K) = AHBK|(AHBK ∨AH ∨BK) ;

55



- Lukasiewicz conjunction (∧L):

(A|H) ∧L (B|K) = AHBK|(AHBK ∨AH ∨BK ∨HK) ;

- Bochvar internal conjunction, or Kleene weak conjunction (∧B);

(A|H) ∧B (B|K) = AHBK|HK = AB|HK ;

- Sobocinski conjunction, or quasi conjunction (∧S):

(A|H) ∧S (B|K) = [(AH ∨H) ∧ (BK ∨K)]|(H ∨K) .

The disjunctions ∨K,∨L,∨B,∨S, associated with the previous conjunctions,
are defined by exploiting De Morgan Laws.

We list below some basic properties, valid in the case of unconditional
events and preserved in our approach, which are not satisfied in general by
the pairs in the set

{(∧K,∨K) , (∧L,∨L) , (∧B,∨B) , (∧S,∨S)} ,
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when unconditional events, say A and B, are replaced by conditional events,
say A|H and B|K.

Property P1.

A|H ⊆ B|K ⇐⇒ (A|H) ∧ (B|K) = A|H ,

where ⊆ denotes the Goodman-Nguyen inclusion relation, defined as

A|H ⊆ B|K ⇐⇒ AH ⊆ BK and BK ⊆ AH .

Property P1 is not satisfied by ∧L,∧B, and ∧S, while it is satisfied by ∧K.

Property P2.

A|H = [(A|H) ∧ (B|K)] ∨ [(A|H) ∧ (B|K)], (4)

A|H = (A|H) ∧ (K|K), (5)

(A|H) ∧ [(B|K) ∨ (B|K)] = [(A|H) ∧ (B|K)] ∨ [(A|H) ∧ (B|K)] . (6)
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Formula (4) is not satisfied by any of the pairs (∧K,∨K), (∧L,∨L),
(∧B,∨B), and (∧S,∨S);

Formula (5) is not satisfied by any of the conjunctions ∧K, ∧L, ∧B, and ∧S;

Formula (6) is not satisfied by the pair (∧L,∨L), while it is satisfied
by the pairs (∧K,∨K), (∧B,∨B), and (∧S,∨S).

Property P3.

(A|H) ∨ (B|K) = (A|H) ∨ [(A|H) ∧ (B|K)] .

Property P3 is not satisfied by the pairs (∧K,∨K), (∧L,∨L), and (∧S,∨S),
while it is satisfied by (∧B,∨B).

Property P4.

P [(A|H) ∧ (B|K)] ≤ P (A|H) ≤ P [(A|H) ∨ (B|K)] . (7)

Property P4 is not satisfied by the pairs (∧B,∨B) and (∧S,∨S), while it is
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satisfied by the pairs (∧K,∨K) and (∧L,∨L).

Property P5.

P [(A|H) ∨ (B|K)] = P (A|H) + P (B|K)− P [(A|H) ∧ (B|K)] . (8)

Property P5 is not satisfied by any of the pairs (∧K,∨K), (∧L,∨L),
(∧B,∨B), and (∧S,∨S).

Property P6.

max {P (A|H)+P (B|K)−1, 0} ≤ P [(A|H)∧(B|K)] ≤ min {P (A|H), P (B|K)} .

max {P (A|H), P (B|K)} ≤ P [(A|H)∨(B|K)] ≤ min{P (A|H)+P (B|K), 1} ,
Property P6 is not satisfied by any of the pairs (∧K,∨K), (∧L,∨L), (∧B,∨B),
and (∧S,∨S), while it is satisfied by the pair (∧gs,∨gs), the conjunction
and disjunction in the approach by Gilio & Sanfilippo.
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We recall that (A|H) ∨ (B|K) = 1− (A|H) ∧ (B|K), by De Morgan Law,
and hence

P [(A|H) ∨ (B|K)] = 1− P [(A|H) ∧ (B|K)] .

Then, the lower and upper bounds on P [(A|H) ∨ (B|K)] can be derived
from the lower and upper bounds on P [(A|H) ∧ (B|K)].
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A criticism to an example in Bradley’s theory

As a final example, let us consider the compound conditional “C, given AH”.

At page 51 of the paper:

Edgington, D. 2020, “Compounds of Conditionals, Uncertainty, and In-
determinacy”, in Elqayam, Douven, Evans et al. 2020, 42-56,

referring to the theory illustrated in

Bradley, R. 2012, “Multidimensional Possible-World Semantics for Con-
ditionals”, The Philosophical Review, 121, 4, 539-71,

it is observed that the probability of “C, given AH” is 0.

Question: is it the case that the probability of C, given AH, is 0 ?

Our answer is NO.

In our approach P (C, given AH) is equal to P (A|H)P (H|AH).
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We represent “if AH then C” by the iterated conditional (A|H)|AH.
We set P (A|H) = x, P[(A|H)|AH] = µ, and we observe that
AH|AH = 0.

Then

(A|H)|AH = (AH+xH)|AH = AH|AH+xH|AH = xH|AH , (9)

and hence

µ = P[(A|H)|AH] = xP (H|AH) = P (A|H)P (H|AH) ,

which in general is not 0.
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Interpretation of Bradley’s example by conditional bets
and bets on conditionals

We can make two equivalent bets on the compound conditional (A|H)|AH.

Conditional bet: if AH is true, then we bet on A|H.

- all probabilistic evaluations are made when AH is uncertain;

- if AH (that is AH ∨ H) turns out to be true, then the bet becomes
effective;

- in this case we pay the amount µ and we receive the random amount
A|H = AH + xH, that is:

we receive 0 if AH is true (with probability P (AH|AH));

we receive x if H is true (with probability P (H|AH)).

Thus, in order the bet be fair, the amount to be paid µ must coincide with
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the prevision of the random amount that we receive, that is

µ = 0 · P (AH|AH) + xP (H|AH) = P (A|H)P (H|AH) .

Bet on the conditional (A|H)|AH.

We set P (A|H) = x and P[(A|H)|AH] = µ; then

- we pay µ and we receive the value assumed by the iterated conditional

(A|H)|AH = (A|H) ∧AH + µAH ,

where

(A|H)∧AH = (A|H)∧(AH∨H) =

{
0, if H is true,
x, if H is false,

= xH ∈ {0, x} .

Thus
(A|H)|AH = xH + µAH ∈ {0, x, µ} .
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When AH is true we receive back the paid amount µ; then, by coherence,
this case is discarded. Therefore (A|H)|AH coincides with the conditional
random quantity

(xH + µAH)|AH = xH|AH ,

and its prevision is

µ = P(xH|AH) = xP (H|AH) = P (A|H)P (H|AH) .

The Conditional bet ”if AH is true, then I bet on A|H”

and

the Bet on the conditional (A|H)|AH are equivalent.
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