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Marta Bı́lková, D. Kozhemiachenko, Ondrej Majer and Sajad

Nazari

Preprint arXiv:2203.01060

1/26

https://arxiv.org/abs/2203.01060


1 Representing incomplete/contradictory probabilistic information
Belnap–Dunn Logic
Non-standard probabilities

2 Dempster-Shafer theory
Mass functions, belief functions and plausibility functions
Representation of evidence

3 Dempster-Shafer theory and BD logic
Our proposal
Examples for mass functions, belief functions and
combination of evidence
What about plausibility?

4 References

2/26



Belnap–Dunn square 4 [Belnap 19]

Belnap–Dunn square (4,∧,∨,¬) is a de Morgan
algebra.

(4,∧,∨) is a lattice
each element represents the available
positive and/or negative information

n: no information
f : false (is bottom)
t : true (is top)
b: contradictory information

¬ is an involutive de Morgan negation.

f

n b

t

Belnap–Dunn
square 4

(0, 1)

(0, 0) (1, 1)

(1, 0)
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Belnap–Dunn Logic: models [Dunn 76]

Language. LBD ∋ φ := p ∈ Prop | φ ∧ φ | φ ∨ φ | ¬φ

Models. M = ⟨W , v+, v− : W × Prop→ 2⟩
v+(p): states where one has information supporting the truth of p
v−(p): states where one has information supporting the falsity of p

Semantics. Two satisfaction relations ⊩+,⊩−

w ⊨+ p iff w ∈ v+(p) w ⊨− p iff w ∈ v−(p)

w ⊨+ ¬ϕ iff w ⊨− ϕ w ⊨− ¬ϕ iff w ⊨+ ϕ

w ⊨+ ϕ ∧ ϕ′ iff w ⊨+ ϕ and w ⊨+ ϕ′ w ⊨− ϕ ∧ ϕ′ iff w ⊨− ϕ or w ⊨− ϕ′

w ⊨+ ϕ ∨ ϕ′ iff w ⊨+ ϕ or w ⊨+ ϕ′ w ⊨− ϕ ∨ ϕ′ iff w ⊨− ϕ and w ⊨− ϕ′
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Non-standard probabilities: frame semantics [Klein et al]

Independence of the probability assigned to positive and
negative information

Extend BD model with a classical probability measure.

A probabilistic BD model is a tuple M = ⟨W , v+, v−,m⟩, s.t.

⟨W , v+, v−⟩ is a BD model and

m : W → [0, 1] is a mass function on W i.e.
∑

s∈W m(s) = 1

Positive probability of φ: p+(φ) :=
∑
{ m(s) | s ⊩+ φ }.

Negative probability of φ: p−(φ) :=
∑
{ m(s) | s ⊩− φ }.

Remark. p+(φ) and p−(φ) are independent.
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Non-standard probabilities: axioms

[Klein et al] Lemma 1

Let M = ⟨W , v ,m⟩ be a probabilistic BD frame. Then the
non-standard probability function p+ induced by m satisfies:

(A1) normalization 0 ≤ p+(φ) ≤ 1
(A2) monotonicity if φ ⊢BD ψ then p+(φ) ≤ p+(ψ)
(A3) import-export p+(φ ∧ ψ) + p+(φ ∨ ψ) = p+(φ) + p+(ψ).

Remarks

p−(φ) = p+(¬φ)

Weaker than classical Kolmogorovian axioms.
Additivity does not hold and is replaced by A3.

In general p+(¬φ) , 1 − p+(φ)

one can have 0 < p+(φ ∧ ¬φ)
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Non-standard probabilities: intuitive representation

Continuous extension of Belnap–Dunn
square, which we can see as the product
bilattice L[0,1] ⊙ L[0,1]
with L[0,1] = ([0, 1],min,max).

(p+(φ), p−(φ)): positive and negative
probabilistic support of φ.

(0, 0): no information concerning φ is
available

(1, 1): maximally conflicting
information

vertical dashed line: “classical” case

(0, 0)

(1, 0)

(0, 1)

(1, 1)
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Belief functions and plausiblity functions

Let f : P(S)→ [0, 1] be a monotone function such that f(∅) = 0
and f(S) = 1.

f is a belief function if, for every k ≥ 1, and for every
A1, . . . ,Ak ∈ P(S), it holds that

f

 ∨
1≤i≤k

Ai

 ≥ ∑
J ⊆ {1, . . . , k }

J , ∅

(−1)|J|+1 · f

∧
j∈J

Aj

 . (1)

f is a plausibility function if, for every k ≥ 1, and for every
A1, . . . ,Ak ∈ P(S), it holds that

f

 ∧
1≤i≤k

Ai

 ≤ ∑
J ⊆ {1, . . . , k }

J , ∅

(−1)|J|+1 · f

∨
j∈J

Aj

 . (2)
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Mass function

Let bel, pl : P(S)→ [0, 1] be a monotone function such that
f(∅) = 0 and f(S) = 1, and m : P(S)→ [0, 1].

Definition

m is a mass function if
∑

A∈P(S) m(A) = 1.

Theorem
- bel is a belief function iff there is a mass function
mbel : P(S)→ [0, 1] such that, for every A ∈ P(S),

bel(A) =
∑
B≤A

mbel(B)

- if bel is a belief function, then pl(A) = 1 − bel(¬A) is a plausibility
function.
- if pl is a plausibility function, then bel(A) = 1 − pl(¬A) is a belief
function.
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Representation of evidence. Example

m : P(S)→ [0, 1] is computed based on the evidence

bel(A) =
∑

B≤A m(B) : the evidence supporting a

pl(A) = 1 − bel(¬A) =
∑

B∩A,∅m(B) : the evidence not
contradicting A

bel(A) ≤ pl(A).

Example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
The doctor gives no information about disease c.
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Representation of evidence. An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
It is assumed it is impossible for the patient to have two of these
diseases.

Representation

S = {a, b , c} and m, bel, pl : P(S)→ [0, 1]

m({a, b}) = 0.7 and m(S) = 0.3.

abc

ab

<<

ac

OO

bc

bb

a

OO <<

b

bb <<

c

bb OO

∅

bb OO ==
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An example

Scenario. A patient has disease a, b or c.
A doctor says “the patient has disease a or b with certainty 0.7.”
The doctor gives no information about disease c.

Representation

S = {a, b , c} and m, bel, pl : P(S)→ [0, 1]

m({a, b}) = 0.7 and m(S) = 0.3.

We get:
bel({a}) = bel({b}) = bel({c}) = 0
bel({a, b}) =

∑
X⊆{a,b}m(X) = 0.7 pl({a, b}) = 1 − bel({c}) = 1

pl({a}) = pl({b}) = 1 pl({c}) = 1 − bel({a, b}) = 0.3

m({a, b}): the ‘probability’ that the disease is in the set {a, b}
without being able to say to which subset it belongs.

if m is non-zero only on singletons, then bel and pl are
probability functions.
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Dempster-Shafer combination rule

Let m1 and m2 be two mass functions on a powerset algebra P(S).
Dempster-Shafer combination rule computes their aggregation
m1⊕2 as follows.

m1⊕2 : P(S)→ [0, 1]

X 7→


0 if X = ∅∑
{m1(X1) ·m2(X2) | X1 ∩ X2 = X}∑
{m1(X1) ·m2(X2) | X1 ∩ X2 , ∅}

otherwise.

Normalization factor:∑
{m1(X1) ·m2(X2) | X1 ∩ X2 , ∅}

= 1 −
∑
{m1(X1) ·m2(X2) | X1 ∩ X2 = ∅}
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What happens with contradictory evidence?

Scenario
A patient has disease a, b or c.
Doctor 1: “the patient has disease a with certainty 0.9 and disease
b with certainty 0.1.”
Doctor 2: “the patient has disease c with certainty 0.9 and disease
b with certainty 0.1.”

Representation

S = {a, b , c}
m1({a}) = 0.9 and m1({b}) = 0.1.
m2({c}) = 0.9 and m2({b}) = 0.1.

Dempster-Shafer combination rule gives

m1⊕2({b}) = 1

because {a} ∩ {b} = {a} ∩ {c} = ∅.
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Our proposal over BD

Define belief and plausibility on BD-models

Let Prop be a finite set of variables.
M = ⟨W , v+, v−, bel⟩ with bel : P(W)→ [0, 1].

bel+(ϕ) := bel(|ϕ|+) and bel−(ϕ) := bel(|ϕ|−)

bel+: belief function on the associated Lindenbaum algebra LBD.
bel−: belief function on Lop

BD.

Remark. if ⊥ and ⊤ are not in the language bel+ (resp. pl+) are
general belief (resp. plausibility) functions.
Consequence. 0 ≤

∑
a∈LBD

mbel+(a) ≤ 1
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Combination of evidence

Let L be a finite distributive lattice.

Without ⊥ and ⊤

m1⊕2 : L → [0, 1]

x 7→
∑
{m1(x1) ·m2(x2) | x1 ∧ x2 = x}.

With ⊥ and ⊤

m1⊕2 : L → [0, 1]

x 7→


0 if x = ⊥∑
{m1(x1) ·m2(x2) | x1 ∧ x2 = x}∑
{m1(x1) ·m2(x2) | x1 ∧ x2 , ⊥}

otherwise.
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Examples. The two doctors
Scenario. A patient has disease a, b or c.
Doctor 1: a with certainty 0.9 and b with certainty 0.1.
Doctor 2: c with certainty 0.9 and b with certainty 0.1.
Representation. m1,m2 : DM3 → [0, 1]

m1(x) =


0.9 if x = a
0.1 if x = b
0 otherwise.

m2(x) =


0.9 if x = c
0.1 if x = b
0 otherwise.

Dempster-Shafer combination rule gives

m1⊕2(x) =


0.81 if x = a ∧ c
0.09 if x = a ∧ b or x = b ∧ c
0.01 if x = b
0 otherwise.

bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19
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Examples. The two doctors

Representation. m1,m2 : DM3 → [0, 1]

m1(x) =


0.9 if x = a ∧ ¬b
0.1 if x = ¬a ∧ b
0 otherwise.

m2(x) =


0.9 if x = ¬b ∧ c
0.1 if x = b ∧ ¬c
0 otherwise.

Dempster-Shafer combination rule gives

m1⊕2(x) =


0.81 if x = a ∧ ¬b ∧ c
0.09 if x = a ∧ b ∧ ¬b ∧ ¬c or x = ¬a ∧ b ∧ ¬b ∧ c
0.01 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19
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Examples. The two doctors
Representation. m1,m2 : DM3 → [0, 1]

m1(x) =


0.9 if x = a ∧ ¬b ∧ ¬c
0.1 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

m2(x) =


0.9 if x = ¬a ∧ ¬b ∧ c
0.1 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

Dempster-Shafer combination rule gives

m1⊕2(x) =



0.81 if x = a ∧ ¬a ∧ ¬b ∧ c ∧ ¬c
0.09 if x = a ∧ ¬a ∧ b ∧ ¬b ∧ ¬c

or x = ¬a ∧ b ∧ ¬b ∧ c ∧ ¬c
0.01 if x = ¬a ∧ b ∧ ¬c
0 otherwise.

bel1⊕2(a) = bel1⊕2(c) = 0.9 and bel1⊕2(b) = 0.19
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What about plausibility?

1 − bel+(¬ϕ) defines a plausibility function
1 − bel+(¬ϕ) is the sum of the masses of the set of states that
do not support the negation of ϕ.
Problem: a set of states can support both ϕ and ¬ϕ and a set
of states can support neither.
In general, we can have 1 − bel+(¬ϕ) ≤ bel+(ϕ)
We can define plausibility independently of belief and impose
bel+(ϕ) ≤ pl+(ϕ)

M = ⟨W , v+, v−, bel, pl⟩ with bel, pl : P(W)→ [0, 1].

bel+(ϕ) := bel(|ϕ|+) and bel−(ϕ) := bel(|ϕ|−)
pl+(ϕ) := pl(|ϕ|+) and pl−(ϕ) := pl(|ϕ|−)

What kind of two-dimensional reading of belief/plausibility can
we propose?

How can we interpret it?
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Two-dimensional interpretation (1/2)

Non-standard probabilities

Models: (W , v+, v−,m : W → [0, 1])
p+(ϕ) =

∑
s∈|ϕ|+ m(s) and p−(ϕ) =

∑
s∈|ϕ|− m(s)

Immediate generalisation for belief.

Non-standard probabilities

Models: (W , v+, v−, bel : P(W)→ [0, 1])
bel+(ϕ) =

∑
X⊆|ϕ|+ m(X) and bel−(ϕ) =

∑
X⊆|ϕ|− m(X)

p+(ϕ), bel+(ϕ): the probability/belief that ϕ is true

p−(ϕ), bel−(ϕ): the probability/belief that ϕ is false

bel+ is monotone and in [0, 1], it satisfies the axioms of belief
functions instead of
import-export: p+(φ ∧ ψ) + p+(φ ∨ ψ) = p+(φ) + p+(ψ).
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Two-dimensional interpretation (2/2)

Models: (W , v+, v−, bel, pl : P(W)→ [0, 1])

Notice that in BD logic |ϕ| = (1, 1) reads as: there is evidence
that ϕ is true and evidence that ϕ is false.
In the classical case, bel(ϕ) = 1 − pl(¬ϕ).
→ interpretation: pl(¬ϕ) is the degree of evidence against
bel(ϕ)→ (bel+(ϕ), pl−(ϕ))
→ pl−(ϕ) maximum evidence against ϕ we can consider
Consider both belief (bel+(ϕ), bel−(ϕ)) and plausibility
(pl+(ϕ), pl−(ϕ)) independently
If we ask bel(X) ≤ pl(X), for X ∈ P(W), then bel and pl come
from different mass functions.
→ one piece of evidence does not support belief and
plausibility in the same manner.
→ the same piece of evidence gives rise to two mass
functions
e.g., circumstantial evidence vs. direct evidence
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Example.

s0 : s1 : p s2 : ¬p s3 : p,¬p

Assume that bel(X) ≤ pl(X) and bel(|p ∧ ¬p|+) = 1.

Therfore, we have∑
X⊆|p∧¬p|+

mbel(X) =
∑

X⊆{s3}

mbel(X) = mbel(∅) + mbel({s3}) = 1.

mbel(∅) = 0, hence mbel({s3}) = 1.
We get

1 ≤ pl(|p ∧ ¬p|+) =
∑

X⊈|p∧¬p|−
mpl(X) =

∑
X⊈|p|−∪|p|+

mpl(X)

=
∑

X⊈{s1,s2,s3}

mpl(X) = mpl(S)

Therefore, evidence that is strongly persuasive considering p ∧ ¬p
is inconclusive regarding the plausibility of either p or ¬p.

25/26



References

[Dunn 76] Dunn, Intuitive semantics for first-degree
entailments and ‘coupled trees’. Philosophical Studies 29(3),
149–168, 1976

[Belnap 19] Belnap, How a computer should think, New
Essays on Belnap–Dunn Logic, 2019.

[Halpern 17] J.Y. Halpern. Reasoning about uncertainty. The
MIT Press, 2nd edition, 2017.

[Klein et al] D. Klein, O. Majer, and S. Rafiee Rad.
Probabilities with gaps and gluts. Journal of Philosophical
Logic, 50(5):1107–1141, October 2021

[Shafer 76] G. Shafer. A mathematical theory of evidence.
Princeton university press, 1976.

[Zhou 13] C. Zhou. Belief functions on distributive lattices.
Artificial Intelligence, 201:1–31, 2013.

26/26


	Representing incomplete/contradictory probabilistic information
	Belnap–Dunn Logic
	Non-standard probabilities

	Dempster-Shafer theory
	Mass functions, belief functions and plausibility functions
	Representation of evidence

	Dempster-Shafer theory and BD logic
	Our proposal
	Examples for mass functions, belief functions and combination of evidence
	What about plausibility?

	References

