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Today’s talk outline 2

Outline of the talk:
• A quick survey of mean curvature flow

• Non-collapsing for mean curvature flow (and some applications)

• The Lawson conjecture (proof after Brendle)

• The Pinkall-Sterling conjecture for CMC tori (joint work with Haizhong Li)

• Generalisations and extensions



Mean curvature flow and non-collapsing 3

The mean curvature flow takes an initial embedding (or immersion) X0 : Mn→ Rn+1

(we assume M is connected and compact) and moves it in the direction of the mean
curvature vector. Precisely, this means we produce a smooth map
X : Mn× [0,T)→Rn+1 such that X(., t) is an immersion for each t, and X(.,0) = X0,
such that

∂X
∂ t

=−Hν .

Basic results:
• A solution exists for a short time and is unique;
• The solution continues to exist as long as the curvature remains bounded;
• Disjoint solutions remain disjoint;
• Embedded solutions remain embedded;
• T < ∞;
• (Huisken, 1984, Gage-Hamilton 1986) If X0 is locally convex (embedded if

n = 1), then Xt→ p ∈ Rn+1 and

X̃t =
Xt−p√
2n(T− t)

→ X̃T in C∞, X̃T(M) = Sn
1(0).

• (Grayson, 1987) If n = 1 and X0 is an embedding, then the same conclusion
holds without assuming convexity.



Mean curvature flow 4
The analogue of Grayson’s theorem is not true for n≥ 2: Singularities can appear without
the whole hypersurface shrinking to a point. It is also not true without the assumption of
embeddedness: A closed curve with a small ‘loop’ will develop a singularity where the
loop shrinks away, with the curvature approaching infinity while the length of the curve
does not approach zero.

There are many analogies between the mean curvature flow of hypersurfaces and the
Ricci flow of Riemannian metrics, both in the behaviour of the flow and its analysis. In
particular Huisken and Sinestrari proved an analogue for mean curvature flow of the
Hamilton-Perel’man results for three dimensional Ricci flow:

If n≥ 3 and X0 is 2-convex (i.e. the sum of the smallest two principal curvatures is
positive at each point) then any point of high curvature has a neighbourhood which is
close (modulo scaling) to either a sphere or a long part of a shrinking cylinder or a
‘capped cylinder,’ and it is possible to define mean curvature flow with surgery to deduce
that the original hypersurface is a sphere or a connected sum of copies of Sn−1×S1.

The n = 2 analogue of the last result would be: A compact surface in R3 with positive
mean curvature can be deformed using mean curvature flow with surgery through a finite
number of surgeries to pieces which are spheres or tori. This is false without the
assumption of embeddedness, and so cannot be proved by the methods Huisken and
Sinestrari use. A recent paper of Brendle and Huisken proves this result with the added
assumption of embeddedness, using the machinery I will describe.



Using embeddedness: Huisken and Hamilton 5

How can we make use of embeddedness?

I described a method which works for n = 1 in my last lecture: The estimate on the
isoperimetric profile (first done by Hamilton around 1995).

Another way to do this appeared in work of Huisken, independently but a little later:
He considered embedded closed curves γt in the plane moving by curve shortening
flow, and showed that a certain bound on the ‘chord-arc profile’ does not get any
worse: Precisely, denote by L(t) the total length of the curve γ0, and by d(x,y, t) and
`(x,y, t) the chord length and the arc length along γt between two points x and y.
Then a chord-arc bound of the form

d(x,y, t)≥ L(t)
c

sin
(

π`(x,y, t)
L(t)

)
with c > π holds for all positive t provided it holds (for all x and y) at t = 0.

Question:
How can something like this work for higher dimensional mean curvature flow?



Using embeddedness: The non-collapsing condition

Brian White (using methods of geometric measure theory), and Weimin Sheng and
Xujia Wang (using PDE methods): Regularity results for mean curvature flow of
mean-convex hypersurfaces.

Sheng and Wang:
• Deliberate attempt to adapt Perelman’s ideas to the mean curvature flow.
• Formulated a geometrically natural analogue of ‘non-collapsing’ for MCF:

A mean-convex solution of MCF is δ -non-collapsed if for every x in M, there is a
ball B of radius δ/H(x, t) in Ωt, with X(x, t) ∈ B̄.

Sheng and Wang proved: If X0 is embedded and mean convex (H > 0) then there
exists δ > 0 such that the solution X : M× [0,T)→ Rn+1 with initial data X0 is
δ -non-collapsed.

Their proof uses a compactness argument after a detailed analysis of the possible
limits of rescalings of the flow near a singularity.



Proof of non-collapsing for MCF using the maximum principle 7

Idea: Write the non-collapsing condition as positivity of a two-point function so that
a maximum principle to can be applied.

Let X : M× [0,T)→ Rn+1 be a (compact) embedded solution of MCF, and let Ωt be
the region enclosed by Mt = X(M, t). Let ν be the ‘outward-pointing’ unit normal
vector. I make the following definitions: For x,y ∈M with y 6= x, and t ∈ [0,T),

k(x,y, t) =
2〈X(x, t)−X(y, t),ν(x, t)〉
‖X(x, t)−X(y, t)‖2 ,

and
k(x, t) = sup{k(x,y, t) : y ∈M \{x}};

I call k the interior ball curvature.

Claim: k(x, t) is the boundary curvature of the largest ball in Ωt touching at X(x, t).



Interior ball curvature 8

Claim: k(x, t) is the boundary curvature of the largest ball in Ωt touching at X(x, t).
Proof: Ball B in Ωt touching at X(x, t) =⇒ B = Br(p), where p = X(x, t)− rν(x, t)) for
some r > 0.

Br(p)⊂Ωt⇐⇒Mt ⊂ (Br(p))c

⇐⇒‖X(y, t)−p‖2 ≥ r2 for all y ∈M;

⇐⇒‖(X(y, t)−X(x, t))+ rν(x, t)‖2 ≥ r2 for all y ∈M;

⇐⇒‖X(y, t)−X(x, t)‖2 +2r 〈X(y, t)−X(x, t),ν(x, t)〉 ≥ 0 for all y ∈M;

⇐⇒ k(x,y, t) =
2〈X(x, t)−X(y, t),ν(x, t)〉
‖X(x, t)−X(y, t)‖2 ≤ 1

r
for all y ∈M \{x};

⇐⇒ k(x, t)≤ 1
r
.

So a ball of boundary curvature k in Ωt touches at X(x, t) if and only if k(x, t)≤ k, and the
largest such ball is the one of boundary curvature equal to k(x, t). Note that k is no smaller
than the largest principal curvature of the hypersurface.



Evolution of k 9

The key to the maximum principle proof is the following claim:

(**) The function k is a viscosity subsolution of the equation

∂k
∂ t

= ∆k+ |A|2k.

This equation is called the ‘linearized MCF’ and is very natural: If Xs is a smooth
family of solutions to mean curvature flow, then the ‘normal variation’ u =

〈
∂Xs
∂ s ,ν

〉
satisfies the equation above. In particular, taking Xs(x, t) = X(x,s+ t) we find that the
mean curvature H is a solution.

Recall that the statement (**) means the following: If φ is a smooth function with
φ(x0, t0) = k(x0, t0) and φ(x, t)≥ k̄(x, t) for x near x0 and t ≤ t0 near t0, then

∂φ

∂ t
≤ ∆φ + |A|2φ

at the point (x0, t0). It follows that any inequality k̄ ≤ CH is preserved, since k−CH
is a viscosity subsolution of the linearised MCF which is initially non-positive, hence
is everywhere non-positive. This implies the Sheng–Wang non-collapsing statement.



k is a viscosity subsolution 10

Now let us prove the statement (**), that k is a subsolution of the linearised MCF. Fix
any (x0, t0) in M× [0,T), and let φ be a smooth function defined near (x0, t0) such
that φ(x0, t0) = k(x0, t0), and φ(x, t)≥ k(x, t) for (x, t) near (x0, t0) with t ≤ t0. By
definition of k we also have φ(x, t)≥ k(x,y, t) for all (x,y, t) ∈M×M× [0, t0] with
(x, t) close to (x0, t0).

We have two possibilities:
Case 1: The supremum k(x0, t0) = sup{k(x0,y, t0) : y 6= x0} is not attained. In this
case the supremum must be attained for a sequence of points y converging to x0, and
k̄(x0, t0) is equal to the largest principal curvature κmax(x0, t0). But then we also have
φ(x, t)≥ k(x, t)≥ h(x,t)(e,e) for any smooth unit vector field near (x0, t0), and we
have equality at (x0, t0) if we choose e(x0, t0) to be the direction of the maximum
principal curvature. This implies(

∂

∂ t
−∆

)
φ
∣∣
(x0,t0)

≤
(

∂

∂ t
−∆

)
h(e,e)

∣∣
(x0,t0)

.

But under MCF, if we define e by parallel transport from (x0, t0) then we have(
∂

∂ t
−∆

)
h(e,e)

∣∣
(x0,t0)

=−|A|2κmax =−|A|2φ ,

as required.
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Case 2: The supremum is attained — there exists y0 6= x0 such that
k(x0, t0) = k(x0,y0, t0). In this case since φ(x, t)≥ k(x, t)≥ k(x,y, t) with equality at
(x0,y0, t0) we have

∂φ

∂ t
(x0, t0)≤

∂k
∂ t

(x0,y0, t0).

To get a good inequality on the second derivatives, it is useful to first look closer at
the geometry of the situation: We have by assumption that Mt lies outside the ball of
radius 1/k with centre at p = X(x)− 1

k
ν(x), and that both X(x0, t0) and X(y0, t0) lie

on the boundary of this ball. Let w be the unit vector from X(x0, t0) to X(y0, t0). Then
Tx0 Mt0 and Ty0 Mt0 are related by reflection in the hyperplane orthogonal to w: The
reflection

R : v 7→ v−2(w · v)w
takes tangent vectors at x0 to tangent vectors at y0 and the normal vector ν(x0, t0) to
ν(y0, t0). We choose geodesic normal coordinates {xi} for M near x0 such that the
second fundamental form at x0 is diagonal, and choose normal coordinates {yi} near

y0 such that ∂X
∂yi = R

(
∂X
∂xi

)
for each i. Then we have the second derivative inequality

∆φ
∣∣
(x0,t0)

≥
n

∑
i=1

(
∂

∂xi +
∂

∂yi

)2
k
∣∣
(x0,y0,t0)

=: Lk
∣∣
(x0,y0,t0)

.

It follows that (
∂

∂ t
−∆

)
φ
∣∣
(x0,t0)

≤
(

∂

∂ t
−L
)

k
∣∣
(x0,y0,t0)

.



Case 2, continued 12

The time derivative is as follows: (where d = ‖X(y)−X(x)‖ and w =
X(y)−X(x)
‖X(y)−X(x)‖ ):

∂

∂ t
k =

∂

∂ t

(
−2〈X(y)−X(x),ν(x)〉
‖X(y)−X(x)‖2

)
=− 2

d2 (〈dw,∇H(x)〉 + 〈−H(y)ν(y)+H(x)ν(x),ν(x)+ kdw〉)

Next we compute first derivatives of k:(
∂

∂xi +
∂

∂yi

)
k =

(
∂

∂xi +
∂

∂yi

)(
−2〈X(y)−X(x),ν(x)〉
‖X(y)−X(x)‖2

)
=− 2

d2

(〈
dw,hp

i (x)
∂X
∂xi

〉
+

〈
∂X
∂yi −

∂X
∂xi ,ν(x)+ kdw

〉)
Note that at (x0,y0, t0) we have the following first derivative conditions:

∂φ

∂xi =
∂k
∂xi =

2(k−κi)

d

〈
w,

∂X
∂xi

〉
;

while the derivatives of k with respect to yi vanish.



Case 2: Computing L 13

(
∂

∂xi +
∂

∂yi

)
k =− 2

d2

(〈
dw,hp

i (x)
∂X
∂xi

〉
+

〈
∂X
∂yi −

∂X
∂xi ,ν(x)+ kdw

〉)

Lk = ∑
i

(
∂

∂xi +
∂

∂yi

)2
k

=− 2
d2

(〈
dw,∇H(x) −|A(x)|2ν(x)

〉
+

〈
∂X
∂yi −

∂X
∂xi , 2 hp

i (x)
∂X
∂xp +2

∂φ

∂xi dw
〉

+ 〈−H(y)ν(y)+H(x)ν(x),ν(x)+ kdw〉 +k
∥∥∥∥ ∂X

∂yi −
∂X
∂xi

∥∥∥∥2
)

From this we get(
∂

∂ t
−L
)

k = |A|2k+
2
d2

(
2
〈

∂X
∂yi −

∂X
∂xi ,κi

∂X
∂xi +

∂φ

∂xi dw
〉
+ k
∥∥∥∥ ∂X

∂yi −
∂X
∂xi

∥∥∥∥2
)

= |A|2k+
2
d2

(
4(k−κi)

〈
w,

∂X
∂xi

〉2
−4

∂φ

∂xi

〈
dw,

∂X
∂xi

〉)

= |A|2φ −∑
i

2
k−κi

(
∂φ

∂xi

)2
≤ |A|2φ .

So we have (∂t−∆)φ ≤ |A|2φ as required, proving the non-collapsing result for mean curvature
flow. Haslhofer and Kleiner recently used this estimate as the basis for a regularity theory for the
mean curvature flow of mean-convex hypersurfaces, and Brendle and Huisken used it to perform
mean curvature flow with surgery on mean-convex surfaces.
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The ‘Lawson conjecture’ dates back to a paper of Lawson from 1970:

Any embedded minimal torus in S3 is congruent to the Clifford torus
C= S1(1/

√
2)×S1(1/

√
2).

Some background behind the conjecture:

• First, the conjecture only makes sense for tori:

For spheres, Almgren proved using the holomorphicity of the Hopf differential that
the only minimal 2-spheres in S3 are the equators (given by the intersection of a
3-plane in R4 with S3).

In another 1970 paper, Lawson constructed examples of embedded minimal surfaces
in S3 of any higher genus, and there are now several other constructions known as
well, but no reasonable conjecture for an analogous classification or rigidity
statement in the higher genus case.



Lawson’s minimal surfaces 15

A quick sketch of Lawson’s construction:

The idea is to cut the three-sphere {(x,y,w,z) : x2 +y2 +w2 + z2 = 1} into congruent
pieces by symmetrically-placed great two-spheres. For example, take the orthogonal
two-spheres {w = z} and {w =−z}, and the three two-spheres given by {y = 0},
{y =

√
3x} and {y =−

√
3x} which meet at equal angles π/3, decomposing S3 into

24 identical convex tetrahedra.



Lawson genus 2 surface 16

By slicing by k equal-angle two-spheres in the x− y plane and m equal-angle
two-spheres in the w− z plane, this construction produces a compact embedded
minimal surface of genus (k−1)(m−1).

If k = m = 2 this is exactly the Clifford torus C.



Immersed minimal tori of rotation 17

Embeddedness is crucial: Without embeddedness the result is false.
Surfaces of rotation:
• minimal surface equation reduces to an ODE;
• solutions similar to the constant mean curvature Delaunay surfaces in R3

• rational ‘period integral’ produces an immersed minimal torus , so there are
infinitely many examples.
• Integrality condition for embeddedness. Otsuki (1970): No embedded examples of
this kind other than the Clifford torus.



Soliton examples 18

Minimal and CMC surfaces have an integrable structure, used by Pinkall and Sterling
to construct (all) immersed CMC tori in S3 (or R3 or H3) as ‘finite gap’ solutions
which can be constructed algebraically (and in fact written explicitly in terms of
elliptic functions, as shown by Bobenko). Very difficult to say anything about
embeddedness (approach by Hauswirth, Kilian and Schmidt seems likely to work in
this situation).

Picture thanks to Mathias Heil
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Simon Brendle’s proved the Lawson conjecture, using some clever adaptations of the
machinery I have just described. One potential obstacle is that we are now looking at
a surface in the 3-sphere instead of in Euclidean space. In fact this causes no
problems:

• Exactly as before, the function k(x) = supy∈M\{x}

{
2〈X(x)−X(y),ν(x)〉
‖X(x)−X(y)‖2

}
is the

boundary curvature of the largest ball which touches the surface at X(x) in the
−ν(x) direction.

• The function k(x) = infy∈M\{x}

{
2〈X(x)−X(y),ν(x)〉
‖X(x)−X(y)‖2

}
is minus the boundary

curvature of the largest ball which touches the surface at X(x) in the +ν(x)
direction.

• The computation I gave above to prove non-collapsing changes in only small
ways.
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The time derivative is as follows: (where d = |X(y)−X(x)| and w =
X(y)−X(x)
|X(y)−X(x)| ):

∂

∂ t
k =

∂

∂ t

(
−2〈X(y)−X(x),ν(x)〉

|X(y)−X(x)|2

)
= − 2

d2 (〈dw,∇H(x)+H(x)X(x)〉+ 〈−H(y)ν(y)+H(x)ν(x),ν(x)+ kdw〉)

Next we compute first derivatives of k:(
∂

∂xi +
∂

∂yi

)
k =

(
∂

∂xi +
∂

∂yi

)(
−2〈X(y)−X(x),ν(x)〉

|X(y)−X(x)|2

)
=− 2

d2

(〈
dw,hp

i (x)
∂X
∂xi

〉
+

〈
∂X
∂yi −

∂X
∂xi ,ν(x)+ kdw

〉)
Note that at (x0,y0, t0) we have the following first derivative conditions:

∂φ

∂xi =
∂k
∂xi =−

2(k−κi)

d

〈
w,

∂X
∂xi

〉
;

while the derivatives of k with respect to yi vanish.



Computing L in the sphere (with Xiaoli Han, Haizhong Li and Yong Wei) 21

(
∂

∂xi +
∂

∂yi

)
k =− 2

d2

(〈
dw,hp

i (x)
∂X
∂xi

〉
+

〈
∂X
∂yi −

∂X
∂xi ,ν(x)+ kdw

〉)

Lk = ∑
i

(
∂

∂xi +
∂

∂yi

)2
k

= − 2
d2

(〈
dw,∇H(x)−|A(x)|2ν(x)−H(x)X(x)

〉
+

〈
∂X
∂yi −

∂X
∂xi ,2hp

i (x)
∂X
∂xp +2

∂φ

∂xi dw
〉

+ 〈−H(y)ν(y)+H(x)ν(x)−nX(y)+nX(x),ν(x)+ kdw〉 +k
∥∥∥∥ ∂X

∂yi −
∂X
∂xi

∥∥∥∥2
)

From this we get(
∂

∂ t
−L
)

k = |A|2k+
2
d2

(
2
〈

∂X
∂yi −

∂X
∂xi ,κi

∂X
∂xi +

∂φ

∂xi dw
〉
+ k
∥∥∥∥ ∂X

∂yi −
∂X
∂xi

∥∥∥∥2
+ · · ·

)

= |A|2k+
2
d2

(
4(k−κi)

〈
w,

∂X
∂xi

〉2
−4

∂φ

∂xi

〈
dw,

∂X
∂xi

〉
+ · · ·

)

= |A|2φ −∑
i

2
k−κi

(
∂φ

∂xi

)2
≤ |A|2φ .+2H−nφ

So we have (∂t−∆)φ ≤ |A|2φ as required, proving the non-collapsing result for mean
curvature flow. (∂t−∆)φ ≤ |A|2φ+2H−nφ , so k satisfies ∂tk ≤ ∆k+ |A|2k+2H−nk in the
viscosity sense. Since ∂tH = ∆H+H|A|2 +nH, we can preserve k ≤ cH for c≥ 1/n.



Brendle’s proof, continued 22

Of course, any minimal hypersurface is a (stationary) solution of mean curvature
flow, so the computation above holds in particular for minimal embedded
hypersurfaces in the sphere. However, in mean curvature flow we could only get a
useful conclusion by comparing the interior ball curvature k with the mean curvature,
and this is zero for a minimal surface.

Brendle’s beautiful idea is to compare k with the maximum principal curvature κ

instead of the mean curvature. One nice reason for trying this is that the holomorphic
Hopf differential allows one to prove that a minimal torus has no umbilic points, so κ

is nowhere zero and so is a smooth positive function.

A second reason why it is a great idea to compare k to κ is because in the Clifford
torus we have k = κ at every point: The lines of curvature in the Clifford torus are
circles in R4, which are in the boundary of the largest touching sphere at every point
they pass through.

Brendle in fact shows using the maximum principle that k = κ everywhere on an
embedded minimal torus.



Brendle’s maximum principle argument 23
Recall that our argument for mean curvature flow in the sphere proved that k satisfies

∂

∂ t
k ≤ ∆k+ |A|2k+H−nk−

n

∑
i=1

2
k−κi

(
∂k
∂xi

)2

.

So for a minimal 2-surface we have (since H = 0 and n = 2)

0≤ ∆k−
2

∑
i=1

2
k−κi

(
∂k
∂xi

)2

+(|A|2−2)k.

Choose κ1 = κ > 0, so κ2 =−κ . Then k ≥ κ , so k−κi ≤ k+κ ≤ 2k. This gives

0≤ ∆k− |Dk|2

k
+(|A|2−2)k = k̄

(
∆ log k̄+(|A|2−2)

)
.

The Simons’ identity for a minimal 2-surface gives

0 = ∆κ− |Dκ|2

κ
+(|A|2−2)κ = κ

(
∆ logκ + |A|2−2

)
.

Combining these, we find
0≤ ∆

(
log k̄− logκ

)
,

so k = Cκ for some C ≥ 1. But any surface has points where k = κ , so C = 1.



Brendle’s proof, continued: 24

This shows that k = κ everywhere, so the osculating sphere at each point does not
intersect the surface.

It follows that ∇1h11 = 0. The minimal surface equation then gives ∇1h22 = 0.

Now consider balls touching on the other side of the surface: The same argument
shows that k =−κ , and it follows that ∇2h22 = 0. The minimal surface equation
gives ∇2h11 = 0. By the Codazzi equation, the second fundamental form is parallel.
The curvature of the surface is therefore constant, hence zero by the Gauss-Bonnet
theorem: The surface is flat. It now follows easily that the surface is congruent to the
Clifford torus, and the Lawson conjecture is proved.



The Pinkall-Sterling conjecture 25
I will now briefly describe my work with Haizhong Li extending Brendle’s idea to constant
mean curvature (CMC) surfaces:

At first sight it seems unlikely that Brendle’s method could work, because there are known
examples of embedded CMC tori which are not just product of circles. Examples can be
constructed in the class of surfaces of rotation, by solving a certain ordinary differential
equation. In fact it was shown by Perdomo that for any nonzero value of H other than
H =± 2√

3
there exists an embedded CMC torus with this value of H which is not a product

torus.

However, Haizhong and I proved that one can recover something similar to Brendle’s argument
by considering spheres touching only on one side of the surface (the side that the mean
curvature vector points towards). We conclude that k = κ , where κ is the largest principal
curvature. It follows that ∇1h11 = ∇1h22 = 0. This is enough for us to conclude that the surface
is a surface of rotation, and we end up with a complete classification of embedded CMC tori in
S3. In particular we prove that CMC tori with mean curvature ± 2√

3
are product tori.

We later found out that the axial symmetry of embedded CMC tori in S3 was an explicit
conjecture in a paper of Ulrich Pinkall and Ivan Sterling in 1989.
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I will finish with a quick description of some recent work with Xuzhong Chen
(currently at ECNU in Shanghai). We were interested in extending the argument to
cover surfaces satisfying other kinds of curvature equations. This can be done for a
reasonable wide variety of examples, of which I mention only one:

Theorem

Let Σ be a compact embedded torus in S3 satisfying κ2 +aκ1 = b, for 0 < a≤ 1 and
b≥ 0. Then Σ is rotationally symmetric (with circles of symmetry parallel to the
principal direction corresponding to κ1). If b = 0 then Σ is a Clifford torus.

An additional issue to be overcome here is that the equation is now fully nonlinear,
and we have to handle the fact that principal directions at the two points x and y
might not align favourably.


