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Today’s talk outline 2

Main idea:
Try to apply a maximum principle to control an isoperimetric profile, in two
situations:

• For a metric on the 2-sphere evolving by Ricci flow; and

• For a region enclosed by a simple closed curve in the plane evolving by curve
shortening flow.

Although the situation is easier to visualise for curves, the computations work out
more nicely for the Ricci flow setting, so I will begin by explaining what happens in
that case, and later come back to the curve shortening flow.
There are close parallels between the two situations: In both cases we show that a
‘maximum principle’ argument can be applied to a suitably defined isoperimetric
profile, keeping it above a time-dependent barrier satisfying a certain parabolic
differential inequality. By explicitly constructing solutions of this differential
inequality we get unexpectedly strong results, including explicit sharp exponential
rates of convergence and immediate control on the curvature.



Ricci flow 3
Given an initial metric g0 on a compact manifold M, Ricci flow produces a smoothly
varying family of metrics gt moving in the direction of the Ricci tensor:

∂

∂ t
gij =−2Rij.

This was introduced by Hamilton in 1982 in the 3D setting.

Basic facts:
• A solution always exists for a short time.
• The solution continues to exist and remains smooth as long as the curvature
remains bounded.

In the 2D setting the curvature tensor is entirely determined by the Gauss curvature
K, and the equation simplifies to

∂

∂ t
gij =−2Kgij.

In particular the metric remains in the same conformal class as it evolves. It is
convenient to rescale the metrics to have fixed area 4π , and readjust the time
parameter accordingly, giving the modified flow

∂

∂ t
gij =−(2K−χ)gij

where χ is the Euler characteristic of the surface.



Ricci flow on surfaces 4

Despite the simpler geometry, the Ricci flow on surfaces is in some ways more
difficult to handle than the 3D Ricci flow. The main result was proved finally by
Bennett Chow in 1991, who completed the last remaining case in a program mostly
carried out by Hamilton:

Theorem (Hamilton, Chow): For any metric g0 on a compact surface, the solution
of the normalised Ricci flow exists for all t ≥ 0 and converges smoothly to a metric
of constant curvature K = χ

2 as t→ ∞

The most difficult case, proved by Chow, is for an arbitrary (not necessarily
positively curved) metric on S2, and it is in this setting that the isoperimetric profile
methods apply most directly.



Isoperimetric profile of a surface 5

Given a metric g of area 4π on S2, the isoperimetric profile is the function on [0,4π]
defined by

Ig(a) = inf{|∂Ω|g : Ω⊂ S2, |Ω|g = a}.
Example: The isoperimetric profile of the standard metric ḡ on S2 is given by

Iḡ(a) =
√

4πa−a2.

Isoperimetric regions are spherical caps.

L = 2π sinθ ;

A =
∫

θ

0
2π sinφ dφ

= 2π (1− cosθ) .

L2 = 4π2 sin2
θ = 4π2(1− cos2 θ) = A(4π−A).

Remark: For any metric, we have I(a)'
√

4πa as a→ 0.

The argument I am going to describe builds on an earlier one by Hamilton:

Theorem (Hamilton 1995): If a metric g0 on S2 has Ig0 ≥ cIḡ for some c > 0, then
this remains true under Ricci flow for all t ≥ 0.



Formulation of the estimate 6

Start by asking the following question:

Consider (smooth, positive) functions ϕ(a, t). Suppose we know that
Ig0(a)≥ ϕ(a,0) for all a. What do we need to assume about ϕ to ensure that
Igt (a)≥ ϕ(a, t) for all a and all t ≥ 0 under Ricci flow?

To answer this we first make some simplifying assumptions: Assume that
lima→0

ϕ(a,t)√
a < 4π for each t ≥ 0, and that Ig0 > ϕ for a ∈ (0,4π).

Suppose that the inequality I> ϕ eventually fails. By the assumption, it follows that
there exists t̄ > 0 and ā ∈ (0,4π) such that Igt (a)≥ ϕ(a, t) for all 0≤ t ≤ t̄ and
a ∈ (0,4π), and Igt̄ (ā) = ϕ(ā, t̄).

It follows that there exists a region Ω0 ⊂ S2 with smooth boundary, |Ω0|gt̄ = ā, and

|∂Ω|gt̄ = ϕ(ā, t̄).

But we also have
|∂Ω|gt ≥ ϕ(|Ω|gt , t)

for 0 < t ≤ t̄, so that
∂

∂ t
(|∂Ω|−ϕ(|Ω|, t)|

∣∣∣
t=t̄
≤ 0.



Variation inequalities 7

Since I≥ ϕ at t = t̄, we also know: If Ωs is any smoothly varying family of regions
deforming Ω0, then |∂Ωs|gt̄ ≥ ϕ(|Ωs|gt̄ , t̄) for all s, with equality at s = 0. The first
derivative therefore vanishes:

∂

∂ s
(|∂Ωs|−ϕ(|Ωs|, t̄)|

∣∣∣
s=0

= 0.

The second derivative is non-negative:

∂ 2

∂ s2 (|∂Ωs|−ϕ(|Ωs|, t̄)|
∣∣∣
s=0
≥ 0.

We will compute these identities and ask when they contradict each other. Under a
variation of Ω in which the boundary moves in the normal direction with speed f , the
first variation is computed as follows:

∂s|Ω|=
∫

∂Ω

f ds,

while
∂s|∂Ω|=

∫
∂Ω

kf ds,

where k is the geodesic curvature of ∂Ω. This gives

0 = ∂s|(|∂Ω|−ϕ(|Ω|)) =
∫

∂Ω

kf ds−ϕ
′
∫

∂Ω

f ds =
∫

∂Ω

f (k−ϕ
′)ds.

Since f is arbitrary, we conclude that k = ϕ ′(ā, t̄) everywhere on ∂Ω0.



Second variation 8

Next we compute the second variation. In fact we only need this for a specific
variation: f = 1. From above we have

∂

∂ s
(|∂Ωs|−ϕ(|Ωs|)) =

∫
∂Ω

kds−ϕ
′|∂Ωs|= 2πχ(Ω)−

∫
Ω

K dµ−ϕ
′|∂Ωs|,

where the last step is Gauss-Bonnet. Differentiating again, we find

∂ 2

∂ s2 (|∂Ωs|−ϕ(|Ωs|)) =−
∫

∂Ω

K ds−ϕ
′
∫

∂Ω

k ds−ϕ
′′|∂Ωs|2

=−
∫

∂Ω

K ds− (ϕ ′)2
ϕ−ϕ

′′
ϕ

2 ≥ 0.

Finally, the time derivative: Since ∂tg =−2(K−1)g, we have

∂

∂ t
|∂Ω|= ∂

∂ t

∫
∂Ω

√
g(∂u,∂u)du =−

∫
∂Ω

(K−1)ds = ϕ−
∫

∂Ω

K ds.

Similarly we have

∂

∂ t
|Ω|=−2

∫
Ω

(K−1)dµ = 2|Ω|−2
∫

Ω

K = 2ā−2
(

2πχ(Ω)−
∫

∂Ω

k ds
)
,

where the last step is Gauss-Bonnet.



Time variation 9

Putting these together we find:

∂

∂ t
(|∂Ω|−ϕ(|Ω|, t)) = ϕ−

∫
∂Ω

K ds−ϕ
′ (2ā−4πχ(Ω)+2ϕ

′
ϕ
)
− ∂ϕ

∂ t
≤ 0.

We now have two inequalities for
∫

∂Ω
K ds:

−(ϕ ′)2
ϕ−ϕ

′′
ϕ

2 ≥
∫

∂Ω

K ds≥ ϕ−2āϕ
′+4πχ(Ω)ϕ ′−2(ϕ ′)2

ϕ− ∂ϕ

∂ t

So we have a contradiction, provided the right-hand side is strictly greater than the
left:

∂ϕ

∂ t
< ϕ

2
ϕ
′′−ϕ(ϕ ′)2 +ϕ−2āϕ

′+4πχ(Ω)ϕ ′.

To finish the picture we need one more piece of information:

Claim: If ϕ is strictly concave, then χ(Ω) = 1.

Proof: It is enough to show that both Ω and S2 \Ω are connected. If Ω is not
connected, then write Ω = Ω1∪Ω2 and ∂Ω = ∂Ω1∪∂Ω2. But then

ϕ(|Ω1|+|Ω2|)=ϕ(|Ω|)= |∂Ω|= |∂Ω1|+|∂Ω2| ≥ϕ(|Ω1|)+ϕ(|Ω2|)>ϕ(|Ω1|+|Ω2|)

by strict concavity, yielding a contradiction. The argument for the complement is
identical.



Comparison theorem for isoperimetric profiles 10

Theorem
Suppose ϕ : [0,4π]× [0,∞) is smooth, reflection-symmetric, and strictly concave for
0 < a < 4π , and is a solution of the differential inequality

∂ϕ

∂ t
≤ ϕ

2
ϕ
′′−ϕ(ϕ ′)2 +ϕ−2āϕ

′+4πϕ
′,

with lima→0
ϕ(a,t)√

a ≤ 4π for each t ≥ 0. If g0 satisfies Ig0 ≥ ϕ(.,0) and (gt) evolves
by the normalised Ricci flow, then Igt ≥ ϕ(., t) for each t ≥ 0.

Proof: Check that (1−ε)ϕ satisfies all the strict inequalities we imposed before.
Now the punchline: How do we find a solution of the differential inequality?

Theorem

Let g̃0 be an axially symmetric metric on S2 with north-south reflection symmetry,
with K positive and increasing from the equator to the poles. Let g̃t be the solution of
normalised Ricci flow with this initial data. Then ϕ(a, t) := Ig̃t (a) satisfies the
inequalities required in the previous theorem, with equality holding throughout.

Proof: Ritoré proved that the isoperimetric regions are the spherical caps bounded by
lines of latitude. Carry through the computation with g̃ and ϕ . Equality holds for all
a and t, so the time variation and second variation inequalities are equalities.



An explicit solution 11

There is a remarkable explicit solution to the Ricci flow on a 2-sphere, found by King
and later independently by Rosenau. Here the metric is rotationally symmetric, and is
given explicitly as follows, as a metric on R× [0,4π] for t ∈ R:

g = u(x, t)(dx2 +dy2),

where

u(x, t) =
sinh(e−2t)

2e−2t(cosh(x)+ cosh(e−2t)
.

This satisfies all the requirements of the previous theorem, and we can compute the
corresponding solution ϕ of the required differential equation.

Important: As t→−∞, the isoperimetric profile ϕ approaches zero. This ensures
that for any metric g0 on S2, we have Ig0 ≥ ϕ(., t0) for sufficiently negative t0. The
theorem then gives Igt ≥ ϕ(., t0 + t) for all t ≥ 0.



Curvature bound 12

What can we deduce from the bound on the isoperimetric profile? Any lower bound
gives large-scale information about the shape: Solutions cannot become very long
and thin. The comparison we have just proved is much stronger:

Theorem (Curvature bound)

In the situation of the previous theorem, we have maxS2 K(., t)≤maxS2 K̃(., t), where
K̃ is the Gauss curvature of the metric g̃.

Proof: A more careful analysis of the isoperimetric profile for small a (obtained by
computing the lengths and areas of small geodesic balls) gives

Ig(a) =
√

4πa− supS2 K
4
√

pi
a3/2 +O(a2) as a→ 0.

This holds for both gt and g̃t and the result follows since

Igt ≥ Ig̃t .

Corollary: For any solution of normalized Ricci flow on S2, there exists t0 such that

K(x, t)≤ coth
(

e−2(t+t0)
)

e−2(t+t0) ≤ 1+
1
2

e−4(t+t0).

From here the convergence of the flow is very easy.



Curve shortening flow 13

In the curve shortening flow, a curve in the plane moves with speed equal to
curvature in the normal direction:

∂X
∂ t

= kN.

N

T

−kN



Features of CSF 14
Basic facts:

• Solutions exist for a short time
• Disjoint curves remain disjoint
• Embedded solutions remain embedded
• A singularity must occur in finite time
• The final time is characterised by blowup of the curvature: If curvature stays
bounded, the curve stays smooth.

The curve can be normalized to fix the enclosed area π (‘Normalised CSF’)

∂X
∂ t

=−kN +X.

Special solutions: A circle is stationary under NCSF.
The grim reaper y = logcosx+ t translates vertically under CSF.
The ‘paperclip’ or ‘Angenent oval’ is an exact solution of CSF given by
et cosy = coshx for t < 0.



Grayson’s theorem 15

Theorem (Grayson, 1986)
If the initial curve is closed and embedded (with area π), the solution of NCSF exists
for all t ≥ 0 and converges smoothly to the unit circle.

Isoperimetric argument: Let Ωt be the region enclosed by the curve at time t.
Define I(a) = inf{|∂Ωt A| : A⊂Ω, |A|= a}.
Example: The circle



CSF: Differential inequality 16

• As before, ask when the inequality IXt ≥ ϕ(., t) is preserved under NCSF.
• By requiring that time variation and second spatial variation inequalities produce a
contradiction, deduce a differential inequality for ϕ:

∂ϕ

∂ t
≤ F(ϕ ′′,ϕ ′,ϕ,a).

• Observe that equality holds if ϕ is constructed from the isoperimetric profile of a
convex curve which is symmetric in both axes and has only four vertices.

• Use the paperclip to produce an explicit comparison.
• As before the isoperimetric bound gives a curvature estimate:

k(x, t)≤ 1+Ce−2t.

• Long time existence and convergence follow.


