Investigating the Role of the Alkali Metals in the Structure Type $K_{14}Cd_9Tl_{21}$

Melissa Janesch¹, Stefanie Gärtner² ¹University of Regensburg, Departement of Inorganic Chemistry ²University of Regensburg, Central Analytics, Dept. X-Ray Structure Analysis, Stefanie.gaertner@ur.de

Universität Regensburg

During the last decade, exploration of systems between group 13 elements and alkali metals has uncovered a very interesting field of solid state chemistry with a rich novelty regarding the anionic substructure.¹ In these systems, the electronegative elements are able to adapt their bonding and coordination to fit a wide range of electron counts. Due to their electron poor character and the position at the frontier between metallic and saltlike materials makes alkali metal thallides are very interesting concerning their structural chemistry as they allow to investigate the limits of the Zintl-Klemm formalism.^{2,3} Alkali metal thallides can form threedimensional networks, two-dimensional layers as well as isolated clusters.⁴ In this context the phase A₁₅Tl₂₇ (A=K, Rb, Cs)^{5,6} is quite interesting, as it combines isolated hypoelectronic [Tl₁₁]⁷⁻-clusters with two-dimensional $\frac{2}{\infty}[Tl_{16}]^{8-}$ -layers. The porous two-dimensional $\frac{2}{\infty}[Tl_{16}]^{8-}$ -layers contain large alkali metals as it was shown by *Corbett* for the ternary compound CsRb₁₄Tl₂₇.

The K₁₄Cd₉Tl₂₁ structure type, which was first reported in 1997 by *Tillard-Charbonnel et al.*, is related to the A₁₅Tl₂₇ phase.⁷ Here, one symmetry inequivalent thallium atom in the two-dimensional layer is substituted by a cadmium atom. Further, the large alkali metal, that resides in the pore of this layer (Wyckoff position 1b), is also replaced by a triangle of cadmium atoms (Wyckoff position 3g). That leads to a chemical composition of $^{2}_{\infty}$ [Cd₉Tl₁₀]⁹⁻ instead of $^{2}_{\infty}$ [Tl₁₆]⁸⁻ for the two-dimensional layer, what corresponds to a formal oxidation. Our investigations on the role of the different alkali metals on the structure type K₁₄Cd₉Tl₂₁ revealed new ternary and quaternary compounds of this structure type.⁸ It turned out that the alkali metals influence the composition of the two-dimensional layer whereas the isolated clusters stay unchanged.

Ternary com	pounds of the	$\mathbf{K}_{14}\mathbf{Cd}_{9}\mathbf{Tl}_{21}$	structure type
--------------------	---------------	--	----------------

Chemical formula	K14CdoTl21	Rb14CdoTl21	Cs14 15 Cd6 22 Tl22 21	Chemical formula	Rb _{1.78} K _{12.22} Cd ₉ Tl ₂₁	Cs _{1.34} K _{12.73} Cd _{8.42} Tl _{21.39}	Cs _{2.06} Rb _{12.04} Cd _{8.12} Tl _{21.58}
Formular weight	5850.77	6499.95	7343.67	Formula weight	5933 31	5993 72	6625.85
Temperature [°C]	-150	-150	-150	Temperature[°C]	-150	-150	-150
Crystal system	hexagonal	hexagonal	hexagonal	Crystal system	hexagonal	hexagonal	hexagonal
Space group	P-62m	P-62m	P-62m	Space group	P-62m	P-62m	P-62m
a = b [Å]	9.8623(4)	10.0131(4)	10.2145(3)	a = b [Å]	9.8793(2)	9.9334(4)	10.0773(3)
c [Å]	17.0878(8)	17.7296(7)	18.3007(6)	c [Å]	17.1230 (2)	17.0628(7)	17.7629(5)
Volume [Å ³]	1439.37(13)	1539.45(14)	1653.61(11)	Volume [Å ³]	1447.31(7)	1458.06(13)	1562.19(10)
Z	1	1	1	Z	1	1	1
ρ _{calc} [g/cm³]	6.75	7.011	7.372	$\rho_{mb} [g/cm^3]$	6.807	6.826	7.043
μ [mm ⁻¹]	33.853	37.071	35.619	μ [mm ⁻¹]	34.400	34.278	36.991
F(000)	2399	2651	2925.0	F(000)	2431	2452	2697.0
Crystal size [mm ³]	$0.05 \times 0.02 \times 0.02$	$0.05 \times 0.03 \times 0.02$	0.04 × 0.03 × 0.02	Crystal size [mm ³]	0.04 × 0.03 × 0.03	0.034 × 0.024 × 0.019	0.059 × 0.036 × 0.024
Radiation [Å]	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Radiation	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)
2Θ range [°]	5.322 to 55.672	5.186 to 55.716	5.054 to 61.306	20 range	4.2 to 61.31	5.306 to 55.714	5.164 to 61.31
Index ranges	$-16 \le h \le 11, -12 \le k \le 11, -28 \le l \le 16$	$-15 \le h \le 16, -16 \le k \le 16, -23 \le l \le 29$	$-18 \le h \le 18, -16 \le k \le 18, -33 \le l \le 26$	Index ranges	$-17 \le h \le 17, -17 \le k \le 17 - 31 \le l \le 31$	$-16 \le h \le 16$, $-16 \le k \le 15$, $-24 \le l \le 28$	-18 ≤ h ≤ 17, -15 ≤ k ≤ 18, -31 ≤ l ≤ 32
Reflections collected	10969	13903	18597	Reflections collected	40460	19700	32478
Independent reflections	2559	2642	3800	Independent reflections	3333	2616	3597
R _{int}	0.0391	0.0333	0.0307	R _{int}	0.0353	0.0575	0.0397
Data/restraints/parameters	2559/0/47	2642/0/47	3800/1/51	Data/restraints/parameters	3333/0/49	2616/6/57	3597/0/53
GooF	1.048	1.032	1.103	GooF	1.129	1.162	1.104
Final R-values [I>=2σ (I)]	$R_1 = 0.0223$, $wR_2 = 0.0360$	$R_1 = 0.0200, wR_2 = 0.0348$	$R_1 = 0.0230, wR_2 = 0.0475$	Final R indexes [I>=2σ (I)]	$R_1 = 0.0142, wR_2 = 0.0313$	R ₁ = 0.0335, wR ₂ = 0.0583	$R_1 = 0.0229$, $wR_2 = 0.0530$
Final R-values [all data]	$R_1 = 0.0258$, $wR_2 = 0.0367$	$R_1 = 0.0216$, $wR_2 = 0.0352$	$R_1 = 0.0253, wR_2 = 0.0482$	Final R indexes [all data]	$R_1 = 0.0150, wR_2 = 0.0314$	$R_1 = 0.0365$, $wR_2 = 0.0590$	$R_1 = 0.0241$, $wR_2 = 0.0534$
Δρ _{max} / Δρ _{min} [eÅ ⁻³]	2.13/-2.80	2.33/-1.48	2.51/-1.68	Δρ _{max} / Δρ _{min} [eÅ ⁻³]	1.68/-1.40	3.40/-2.62	3.81/-2.30
Flack Parameter	-0.002(7)	0.029(7)	-0.009(5)	Flack parameter	0.002(3)	-0.019(9)	0.045(5)

Quaternary compounds of the K₁₄**Cd**₉**Tl**₂₁ **structure type**

Chemical formula	K ₁₄ Cd ₉ Tl ₂₁	Rb ₁₄ Cd ₉ Tl ₂₁	Cs _{14.15} Cd _{6.22} Tl _{23.31}	Chemical formula	Rb _{1.78} K _{12.22} Cd ₉ Tl ₂₁	$Cs_{1.34}K_{12.73}Cd_{8.42}TI_{21.39}$	$Cs_{2.06}Rb_{12.04}Cd_{8.12}Tl_{21.58}$
Formular weight	5850.77	6499.95	7343.67	Formula weight	5933.31	5993.72	6625.85
Temperature [°C]	-150	-150	-150	Temperature[°C]	-150	-150	-150
Crystal system	hexagonal	hexagonal	hexagonal	Crystal system	hexagonal	hexagonal	hexagonal
Space group	P-62m	P-62m	P-62m	Space group	P-62m	P-62m	P-62m
a = b [Å]	9.8623(4)	10.0131(4)	10.2145(3)	a = b [Å]	9.8793(2)	9.9334(4)	10.0773(3)
c [Å]	17.0878(8)	17.7296(7)	18.3007(6)	c [Å]	17.1230 (2)	17.0628(7)	17.7629(5)
Volume [Å ³]	1439.37(13)	1539.45(14)	1653.61(11)	Volume [Å ³]	1447.31(7)	1458.06(13)	1562.19(10)
Z	1	1	1	Z	1	1	1
ρ _{calc} [g/cm ³]	6.75	7.011	7.372	ρ _{calc} [g/cm ³]	6.807	6.826	7.043
μ [mm ⁻¹]	33.853	37.071	35.619	μ [mm ⁻¹]	34.400	34.278	36.991
F(000)	2399	2651	2925.0	F(000)	2431	2452	2697.0
Crystal size [mm ³]	$0.05 \times 0.02 \times 0.02$	0.05 × 0.03 × 0.02	0.04 × 0.03 × 0.02	Crystal size [mm ³]	0.04 × 0.03 × 0.03	$0.034 \times 0.024 \times 0.019$	0.059 × 0.036 × 0.024
Radiation [Å]	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Radiation	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)	Ag Kα (λ = 0.56087)
20 range [°]	5.322 to 55.672	5.186 to 55.716	5.054 to 61.306	20 range	4.2 to 61.31	5.306 to 55.714	5.164 to 61.31
Index ranges	$-16 \le h \le 11, -12 \le k \le 11, -28 \le l \le 16$	$-15 \le h \le 16, -16 \le k \le 16, -23 \le l \le 29$	$-18 \le h \le 18, -16 \le k \le 18, -33 \le l \le 26$	Index ranges	-17 ≤ h ≤ 17, -17 ≤ k ≤ 17 -31 ≤ l ≤ 31	$-16 \le h \le 16, -16 \le k \le 15, -24 \le l \le 28$	-18 ≤ h ≤ 17, -15 ≤ k ≤ 18, -31 ≤ l ≤ 32
Reflections collected	10969	13903	18597	Reflections collected	40460	19700	32478
Independent reflections	2559	2642	3800	Independent reflections	3333	2616	3597
R _{int}	0.0391	0.0333	0.0307	R _{int}	0.0353	0.0575	0.0397
Data/restraints/parameters	2559/0/47	2642/0/47	3800/1/51	Data/restraints/parameters	3333/0/49	2616/6/57	3597/0/53
GooF	1.048	1.032	1.103	GooF	1.129	1.162	1.104
Final R-values [I>=2σ (I)]	$R_1 = 0.0223$, $wR_2 = 0.0360$	$R_1 = 0.0200, wR_2 = 0.0348$	R ₁ = 0.0230, wR ₂ = 0.0475	Final R indexes [I>=2σ (I)]	$R_1 = 0.0142$, $wR_2 = 0.0313$	$R_1 = 0.0335$, $wR_2 = 0.0583$	$R_1 = 0.0229$, $wR_2 = 0.0530$
Final R-values [all data]	$R_1 = 0.0258$, $wR_2 = 0.0367$	$R_1 = 0.0216$, $wR_2 = 0.0352$	$R_1 = 0.0253, wR_2 = 0.0482$	Final R indexes [all data]	$R_1 = 0.0150, wR_2 = 0.0314$	$R_1 = 0.0365$, $wR_2 = 0.0590$	$R_1 = 0.0241$, $wR_2 = 0.0534$
$\Delta \rho_{max} / \Delta \rho_{min} [eÅ^{-3}]$	2.13/-2.80	2.33/-1.48	2.51/-1.68	Δρ _{max} / Δρ _{min} [eÅ ⁻³]	1.68/-1.40	3.40/-2.62	3.81/-2.30
Flack Parameter	-0.002(7)	0.029(7)	-0.009(5)	Flack parameter	0.002(3)	-0.019(9)	0.045(5)

Role of the Alkali Metals

Apparently cesium expands the unit cell and elongates the Cd2-Cd2 distances (3g), which then rather fit TI7-TI7 distances (3g). This leads to an additional TI incorporation in the pore of the twodimensional layer on Wyckoff position 3g for the ternary compound Cs_{14.15}Cd_{6.22}Tl_{23.31}.

The TI5-TI5-distances are compressed with the growing size of the alkali metal. Hence, this shows the more space demanding effect of the heavier alkali metal cesium compared to potassium or rubidium. With this compression there is less space available in the pore of the layer and therefore the single alkali metal (1b) is observed next to the more space demanding Cd-triagle (3g). This is the involvement of the $A_{15}TI_{27}$ phase, which is always present if cesium is used.

In the quarternary approches, where the ligher alkali metals are present next to cesium the epansion is not that big. Thus, only the ternary compound shows an involvement of the binary Cs_{14.52}Tl_{28.4}.

TI4-TI4 bzw.	2.9682(17)	3.0606(9)	2.9839(14)	3.0807(14)
Cd1-Cd1 [Å]	3.1027(13)	3.2665(8)	3.1639(12)	3.2833(12)
TI7-TI4 bzw.	3.0121(9)	/	3.0551(9)	3.0124(53)
Cd2-Cd1 [Å]				
TI7/Cd2-TI5 [Å]	2.9680(10)	/	2.9821(9)	3.0705(18)
Tl7/Cd2-A3 [Å]	3.8203(22)	/	3.9579(9)	4.0921(12)
Tl7-Tl7 bzw.	2.8319(20)	/	2.8797(18)	3.0765(12)
Cd2-Cd2 [Å]				

The replacement of the Cs4 (1b) by a Cd2 (3g) leads to unusally short Cd2-Tl5 distances. Hence the TI5 atom splits into TI5A, which has the same s.o.f. als the Cd atom and TI5B, which can be found in presence of the Cs4 atom. This model yields a reasonable TI5A-Cd2 distance.

Density of States

Program: FPLO21, full-potential non orthogonal local orbital minimum-basis within the generalized approximation (GGA) for a full relativistic mode; exchange correlation: PBA

4.1931(3)

4.3065(8)

$K_{14} Cd_9 Tl_{21}$

Mesaured atomic percent Difference [%] **Atomic percent Atomic percent** Absolut error (3σ) [%] Element calculated [%] normalized [%] mesaured [%] 0.95 25.72 37.92 31.82 -6.10 Potassium 1.43 20.46 13.86 20.44 0.02 Cadmium 47.73 28.24 6.10 4.32 41.63 Thallium 32.18 2.38 Oxygen

Cs_{14.15} Cd_{6.22}Tl_{23.31}

Also here it was tried to calculate the band structure and DOS for the hypotetically $K_{14}Cd_3Tl_{27}$, which only shows a Cd-triangle in the pore, but no substitution of the capping Tl4 atom by a cadmium atom. However, the calculations never converged.

alkali metals. For the heavier homologue cesium there is no band gap above the Fermi level Taking a closer look at the individual alkali metals showed that the alkali metals in the pore (Wyckoff position 1b) exhibit a more metallic character, whereas the alkali metals between the isolated clusters (Wyckoff position 6*i*) are more salt like.

¹ C. Belin, M. Tillard-Charbonnel, *Coord. Chem. Rev.*, **1998**, *178*, 529-564. ² W. Klemm, Angew. Chem., **1951**, *63*, 133. ³ S. Steinberg et al., *Eur. J. Inorg. Chem.*, **2021**, 10.1002/ejic.202100795. ⁴ S. Gärtner, Crystals, **2020**, *10*, 1-26.

⁵ Z. C. Dong, J. D. Corbett, *Inorg. Chem.* **1996**, *35*, 1444–1450. ⁶ V. F. Schwinghammer, S.M. Tiefenthaler, S. Gärtner, *Materials*, **2021**, *14*, 7512. ⁷ M. Tillard-Charbonnel et al., *Chem. Eur. J.*, **1997**, *5*, 799-806. ⁸ M. Janesch, Z. Naturforsch., **2023**, in preparation.

Element	Atomic percent calculated [%]	Atomic percent mesaured [%]	Mesaured atomic percent normalized [%]	Difference [%]	Absolut error (3 σ) [%]
Cesium	32.40	10.86	33.86	-1.46	1.75
Cadmium	14.24	4.39	13.69	0.55	0.72
Thallium	52.37	16.82	52.45	0.92	4.41
Carbon	/	67.92	/	/	4.87

Conclusion

While potassium and rubidium form a solid solution, the use of cesium always results in an involvement of the A₁₅Tl₂₇ phase next to the the K₁₄Cd₉Tl₂₁ structure type. At the first glance it seemed to be only a size effect of the growing atomic radii of cesium compared to potassium and rubidium. Theortical DFT calculation gave insight in the electronic properties of the compounds and suggested, that the different alkali metals might vary in their electronic effects. This seems to be a second explanation of the involvement of the $A_{15}TI_{27}$ phase, if the heavy cesium is present. More sophisticated theoretical studies are planned.

Further investigations are focusing on the solid solution of rubidium and potassium in A₁₄Cd₉Tl₂₁. The use of the lighter homologue sodium never resulted in a compound of the desired structure type.